Détecter plusieurs objets

L'API Cloud Vision peut détecter et extraire plusieurs objets d'une image grâce à la localisation d'objets.

La localisation d'objets identifie plusieurs objets dans une image et fournit une annotation LocalizedObjectAnnotation pour chaque objet de l'image. Chaque valeur LocalizedObjectAnnotation identifie les informations sur l'objet, sa position et les limites rectangulaires de la région de l'image contenant l'objet.

Cela concerne à la fois les objets importants et ceux qui le sont moins.

Les informations sur les objets ne sont renvoyées qu'en anglais. Cloud Translation peut traduire les libellés en anglais dans plusieurs autres langues.

image avec cadres de délimitation
Crédit image : Bogdan Dada sur Unsplash(annotations ajoutées).

Par exemple, l'API pourrait renvoyer les informations et données de délimitation d'emplacement suivantes pour les objets de l'image ci-dessus :

Nom mid Score Limites
Bicycle wheel (roue de vélo) /m/01bqk0 0,89648587 (0,32076266, 0,78941387), (0,43812272, 0,78941387), (0,43812272, 0,97331065), (0,32076266, 0,97331065)
Bicycle (vélo) /m/0199g 0,886761 (0,312, 0,6616471), (0,638353, 0,6616471), (0,638353, 0,9705882), (0,312, 0,9705882)
Bicycle wheel (roue de vélo) /m/01bqk0 0,6345275 (0,5125398, 0,760708), (0,6256646, 0,760708), (0,6256646, 0,94601655), (0,5125398, 0,94601655)
Picture frame (cadre photo) /m/06z37_ 0,6207608 (0,79177403, 0,16160682), (0,97047985, 0,16160682), (0,97047985, 0,31348917), (0,79177403, 0,31348917)
Tire (pneu) /m/0h9mv 0,55886006 (0,32076266, 0,78941387), (0,43812272, 0,78941387), (0,43812272, 0,97331065), (0,32076266, 0,97331065)
Door (porte) /m/02dgv 0,5160098 (0,77569866, 0,37104446), (0,9412425, 0,37104446), (0,9412425, 0,81507325), (0,77569866, 0,81507325)

mid contient un identifiant généré automatiquement correspondant à l'entrée d'un libellé sur Google Knowledge Graph. Pour plus d'informations sur l'inspection des valeurs mid, consultez la documentation de l'API Google Knowledge Graph Search.

Requêtes de localisation d'objets

Configurer votre authentification et votre projet GCP

Détecter des objets dans une image locale

L'API Vision peut détecter des fonctionnalités dans un fichier image local en envoyant le contenu du fichier image en tant que chaîne encodée en base64 dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • base64-encoded-image : représentation en base64 (chaîne ASCII) de vos données d'image binaires. Cette chaîne doit ressembler à la chaîne suivante :
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Consultez la section encodage en base64 pour plus d'informations.

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "maxResults": 10,
          "type": "OBJECT_LOCALIZATION"
        },
      ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Réponse :

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage C#.

            var client = ImageAnnotatorClient.Create();
            var response = client.DetectLocalizedObjects(image);

            Console.WriteLine($"Number of objects found {response.Count}");
            foreach (var localizedObject in response)
            {
                Console.Write($"\n{localizedObject.Name}");
                Console.WriteLine($" (confidence: {localizedObject.Score})");
                Console.WriteLine("Normalized bounding polygon vertices: ");

                foreach (var vertex
                        in localizedObject.BoundingPoly.NormalizedVertices)
                {
                    Console.WriteLine($" - ({vertex.X}, {vertex.Y})");
                }
            }

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjects(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.LocalizeObjects(ctx, image, nil)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No objects found.")
		return nil
	}

	fmt.Fprintln(w, "Objects:")
	for _, annotation := range annotations {
		fmt.Fprintln(w, annotation.Name)
		fmt.Fprintln(w, annotation.Score)

		for _, v := range annotation.BoundingPoly.NormalizedVertices {
			fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.

/**
 * Detects localized objects in the specified local image.
 *
 * @param filePath The path to the file to perform localized object detection on.
 * @throws Exception on errors while closing the client.
 * @throws IOException on Input/Output errors.
 */
public static void detectLocalizedObjects(String filePath) throws IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder()
          .addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
          .setImage(img)
          .build();
  requests.add(request);

  // Initialize client that will be used to send requests. This client only needs to be created
  // once, and can be reused for multiple requests. After completing all of your requests, call
  // the "close" method on the client to safely clean up any remaining background resources.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    // Perform the request
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    // Display the results
    for (AnnotateImageResponse res : responses) {
      for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
        System.out.format("Object name: %s%n", entity.getName());
        System.out.format("Confidence: %s%n", entity.getScore());
        System.out.format("Normalized Vertices:%n");
        entity
            .getBoundingPoly()
            .getNormalizedVerticesList()
            .forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
const fs = require('fs');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = `/path/to/localImage.png`;
const request = {
  image: {content: fs.readFileSync(fileName)},
};

const [result] = await client.objectLocalization(request);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
  console.log(`Name: ${object.name}`);
  console.log(`Confidence: ${object.score}`);
  const vertices = object.boundingPoly.normalizedVertices;
  vertices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'path/to/your/image.jpg'

function detect_object($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $image = file_get_contents($path);
    $response = $imageAnnotator->objectLocalization($image);
    $objects = $response->getLocalizedObjectAnnotations();

    foreach ($objects as $object) {
        $name = $object->getName();
        $score = $object->getScore();
        $vertices = $object->getBoundingPoly()->getNormalizedVertices();

        printf('%s (confidence %f)):' . PHP_EOL, $name, $score);
        print('normalized bounding polygon vertices: ');
        foreach ($vertices as $vertex) {
            printf(' (%f, %f)', $vertex->getX(), $vertex->getY());
        }
        print(PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def localize_objects(path):
    """Localize objects in the local image.

    Args:
    path: The path to the local file.
    """
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()

    with open(path, 'rb') as image_file:
        content = image_file.read()
    image = vision.types.Image(content=content)

    objects = client.object_localization(
        image=image).localized_object_annotations

    print('Number of objects found: {}'.format(len(objects)))
    for object_ in objects:
        print('\n{} (confidence: {})'.format(object_.name, object_.score))
        print('Normalized bounding polygon vertices: ')
        for vertex in object_.bounding_poly.normalized_vertices:
            print(' - ({}, {})'.format(vertex.x, vertex.y))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Ruby.

# image_path = "Path to local image file, eg. './image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision.image_annotator

response = image_annotator.object_localization_detection image: image_path

response.responses.each do |res|
  res.localized_object_annotations.each do |object|
    puts "#{object.name} (confidence: #{object.score})"
    puts "Normalized bounding polygon vertices:"
    object.bounding_poly.normalized_vertices.each do |vertex|
      puts " - (#{vertex.x}, #{vertex.y})"
    end
  end
end

Détecter des objets dans une image distante

Pour plus de facilité, l'API Vision peut directement détecter des fonctionnalités dans un fichier image de Google Cloud Storage ou sur le Web sans envoyer le contenu du fichier image dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

https://cloud.google.com/vision/docs/images/bicycle_example.png
  • cloud-storage-image-uri : chemin d'accès à un fichier image valide dans un bucket Cloud Storage. Il faut au minimum disposer des droits en lecture sur le fichier. Exemple :
    • gs://storage-bucket/filename.jpg

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "maxResults": 10,
          "type": "OBJECT_LOCALIZATION"
        },
      ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Réponse :

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage C#.

            var client = ImageAnnotatorClient.Create();
            var response = client.DetectLocalizedObjects(image);

            Console.WriteLine($"Number of objects found {response.Count}");
            foreach (var localizedObject in response)
            {
                Console.Write($"\n{localizedObject.Name}");
                Console.WriteLine($" (confidence: {localizedObject.Score})");
                Console.WriteLine("Normalized bounding polygon vertices: ");

                foreach (var vertex
                        in localizedObject.BoundingPoly.NormalizedVertices)
                {
                    Console.WriteLine($" - ({vertex.X}, {vertex.Y})");
                }
            }

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjectsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.LocalizeObjects(ctx, image, nil)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No objects found.")
		return nil
	}

	fmt.Fprintln(w, "Objects:")
	for _, annotation := range annotations {
		fmt.Fprintln(w, annotation.Name)
		fmt.Fprintln(w, annotation.Score)

		for _, v := range annotation.BoundingPoly.NormalizedVertices {
			fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.

/**
 * Detects localized objects in a remote image on Google Cloud Storage.
 *
 * @param gcsPath The path to the remote file on Google Cloud Storage to detect localized objects
 *     on.
 * @throws Exception on errors while closing the client.
 * @throws IOException on Input/Output errors.
 */
public static void detectLocalizedObjectsGcs(String gcsPath) throws IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();

  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder()
          .addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
          .setImage(img)
          .build();
  requests.add(request);

  // Initialize client that will be used to send requests. This client only needs to be created
  // once, and can be reused for multiple requests. After completing all of your requests, call
  // the "close" method on the client to safely clean up any remaining background resources.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    // Perform the request
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();
    client.close();
    // Display the results
    for (AnnotateImageResponse res : responses) {
      for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
        System.out.format("Object name: %s%n", entity.getName());
        System.out.format("Confidence: %s%n", entity.getScore());
        System.out.format("Normalized Vertices:%n");
        entity
            .getBoundingPoly()
            .getNormalizedVerticesList()
            .forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = `gs://bucket/bucketImage.png`;

const [result] = await client.objectLocalization(gcsUri);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
  console.log(`Name: ${object.name}`);
  console.log(`Confidence: ${object.score}`);
  const veritices = object.boundingPoly.normalizedVertices;
  veritices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_object_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->objectLocalization($path);
    $objects = $response->getLocalizedObjectAnnotations();

    foreach ($objects as $object) {
        $name = $object->getName();
        $score = $object->getScore();
        $vertices = $object->getBoundingPoly()->getNormalizedVertices();

        printf('%s (confidence %d)):' . PHP_EOL, $name, $score);
        print('normalized bounding polygon vertices: ');
        foreach ($vertices as $vertex) {
            printf(' (%d, %d)', $vertex->getX(), $vertex->getY());
        }
        print(PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def localize_objects_uri(uri):
    """Localize objects in the image on Google Cloud Storage

    Args:
    uri: The path to the file in Google Cloud Storage (gs://...)
    """
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()

    image = vision.types.Image()
    image.source.image_uri = uri

    objects = client.object_localization(
        image=image).localized_object_annotations

    print('Number of objects found: {}'.format(len(objects)))
    for object_ in objects:
        print('\n{} (confidence: {})'.format(object_.name, object_.score))
        print('Normalized bounding polygon vertices: ')
        for vertex in object_.bounding_poly.normalized_vertices:
            print(' - ({}, {})'.format(vertex.x, vertex.y))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Ruby.

# image_path = "Google Cloud Storage URI, eg. 'gs://my-bucket/image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision.image_annotator

response = image_annotator.object_localization_detection image: image_path

response.responses.each do |res|
  res.localized_object_annotations.each do |object|
    puts "#{object.name} (confidence: #{object.score})"
    puts "Normalized bounding polygon vertices:"
    object.bounding_poly.normalized_vertices.each do |vertex|
      puts " - (#{vertex.x}, #{vertex.y})"
    end
  end
end
# image_path = "URI, eg. 'https://site.tld/image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision.image_annotator

response = image_annotator.object_localization_detection image: image_path

response.responses.each do |res|
  res.localized_object_annotations.each do |object|
    puts "#{object.name} (confidence: #{object.score})"
    puts "Normalized bounding polygon vertices:"
    object.bounding_poly.normalized_vertices.each do |vertex|
      puts " - (#{vertex.x}, #{vertex.y})"
    end
  end
end

Commande gcloud

Pour détecter les libellés dans une image, utilisez la commande gcloud ml vision detect-objects comme indiqué dans l'exemple suivant :

gcloud ml vision detect-objects https://cloud.google.com/vision/docs/images/bicycle_example.png

Essayer

Essayez la détection et la localisation des objets ci-dessous. Vous pouvez utiliser l'image déjà spécifiée https://cloud.google.com/vision/docs/images/bicycle_example.png ou spécifier votre propre image à la place. Pour envoyer la requête, cliquez sur Exécuter.

image sans cadres de délimitation
Crédit image :Bogdan Dada sur Unsplash.