Détecter les pages et entités Web

La fonctionnalité Détection Web détecte les références Web à une image.

Image de carnaval
Crédit image : Quinten de Graaf sur Unsplash.

Catégorie Réponses
Entités Web
  • entityId: /m/02p7_j8, score: 1.3225499, description: Carnival in Rio de Janeiro
  • entityId: /m/06gmr, score: 1.1684971, description: Rio de Janeiro
  • entityId: /m/04cx88, score: 1.05945, description: Brazilian Carnival
...
Images à correspondance complète
  • url: https://1000lugaresparair.files.wordpress.com/2017/11/quinten-de-graaf-278848.jpg
  • url: https://freewalkingtourrotterdam.com/wp-content/uploads/2017/07/quinten-de-graaf-278848.jpg
...
Images à correspondance partielle
  • url: https://www.linnanneito.fi/wp-content/uploads/sambakarnevaali-riossa.jpg
  • url: https://static.airhelp.com/wp-content/uploads/2019/02/26105557/two-women-in-carnival-costumes.jpg
...
Pages avec des images correspondantes
  • url: https://travelnoire.com/best-carnival-celebrations-around-the-world/,
    pageTitle: Best \u003cb\u003eCarnival\u003c/b\u003e Celebrations Around The World - Travel Noire,
    fullMatchingImages: [{url: https://travelnoire.com/wp-content/uploads/2019/02/quinten-de-graaf-278848-unsplash.jpg}]
  • url: https://bespokebrazil.com/rio-carnival-2019/,
    pageTitle: Visit \u003cb\u003eRio Carnival 2019\u003c/b\u003e with the Brazil Specialists - Bespoke Brazil,
    partialMatchingImages: [{ url: https://bespoke-brazil-2018-bespokebrazil.netdna-ssl.com/wp-content/uploads/2019/01/Carnival-1.jpg}]
...
Images similaires
  • url: https://www.brazilbookers.com/_images/photos/rio-carnival-images/rio-carnival-2016-carnival-date.jpg
  • url: https://image.redbull.com/rbcom/010/2017-02-08/1331843859949_3/0100/0/1/watch-rio-carnival-2017-live-on-red-bull-tv.jpg
...
Thèmes les plus probables rio carnival 2019 dancers

Demandes de détection Web

Configurer votre authentification et votre projet GCP

Détecter les entités Web avec une image locale

L'API Vision peut détecter des fonctionnalités dans un fichier image local en envoyant le contenu du fichier image en tant que chaîne encodée en base64 dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • base64-encoded-image : représentation en base64 (chaîne ASCII) de vos données d'image binaires. Cette chaîne doit ressembler à la chaîne suivante :
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Consultez la section encodage en base64 pour plus d'informations.

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "maxResults": 10,
          "type": "WEB_DETECTION"
        },
      ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Réponse :

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage C#.

// Load an image from a local file.
var image = Image.FromFile(filePath);
var client = ImageAnnotatorClient.Create();
WebDetection annotation = client.DetectWebInformation(image);
foreach (var matchingImage in annotation.FullMatchingImages)
{
    Console.WriteLine("MatchingImage Score:\t{0}\tUrl:\t{1}",
        matchingImage.Score, matchingImage.Url);
}
foreach (var page in annotation.PagesWithMatchingImages)
{
    Console.WriteLine("PageWithMatchingImage Score:\t{0}\tUrl:\t{1}",
        page.Score, page.Url);
}
foreach (var matchingImage in annotation.PartialMatchingImages)
{
    Console.WriteLine("PartialMatchingImage Score:\t{0}\tUrl:\t{1}",
        matchingImage.Score, matchingImage.Url);
}
foreach (var entity in annotation.WebEntities)
{
    Console.WriteLine("WebEntity Score:\t{0}\tId:\t{1}\tDescription:\t{2}",
        entity.Score, entity.EntityId, entity.Description);
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWeb(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	web, err := client.DetectWeb(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Web properties:")
	if len(web.FullMatchingImages) != 0 {
		fmt.Fprintln(w, "\tFull image matches:")
		for _, full := range web.FullMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", full.Url)
		}
	}
	if len(web.PagesWithMatchingImages) != 0 {
		fmt.Fprintln(w, "\tPages with this image:")
		for _, page := range web.PagesWithMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", page.Url)
		}
	}
	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "\tEntities:")
		fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}
	if len(web.BestGuessLabels) != 0 {
		fmt.Fprintln(w, "\tBest guess labels:")
		for _, label := range web.BestGuessLabels {
			fmt.Fprintf(w, "\t\t%s\n", label.Label)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.WebDetection;
import com.google.cloud.vision.v1.WebDetection.WebEntity;
import com.google.cloud.vision.v1.WebDetection.WebImage;
import com.google.cloud.vision.v1.WebDetection.WebLabel;
import com.google.cloud.vision.v1.WebDetection.WebPage;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectWebDetections {

  public static void detectWebDetections() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectWebDetections(filePath);
  }

  // Finds references to the specified image on the web.
  public static void detectWebDetections(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Type.WEB_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // Search the web for usages of the image. You could use these signals later
        // for user input moderation or linking external references.
        // For a full list of available annotations, see http://g.co/cloud/vision/docs
        WebDetection annotation = res.getWebDetection();
        System.out.println("Entity:Id:Score");
        System.out.println("===============");
        for (WebEntity entity : annotation.getWebEntitiesList()) {
          System.out.println(
              entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
        }
        for (WebLabel label : annotation.getBestGuessLabelsList()) {
          System.out.format("%nBest guess label: %s", label.getLabel());
        }
        System.out.println("%nPages with matching images: Score%n==");
        for (WebPage page : annotation.getPagesWithMatchingImagesList()) {
          System.out.println(page.getUrl() + " : " + page.getScore());
        }
        System.out.println("%nPages with partially matching images: Score%n==");
        for (WebImage image : annotation.getPartialMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with fully matching images: Score%n==");
        for (WebImage image : annotation.getFullMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with visually similar images: Score%n==");
        for (WebImage image : annotation.getVisuallySimilarImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.


// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Detect similar images on the web to a local file
const [result] = await client.webDetection(fileName);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
  console.log(
    `Full matches found: ${webDetection.fullMatchingImages.length}`
  );
  webDetection.fullMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.partialMatchingImages.length) {
  console.log(
    `Partial matches found: ${webDetection.partialMatchingImages.length}`
  );
  webDetection.partialMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.webEntities.length) {
  console.log(`Web entities found: ${webDetection.webEntities.length}`);
  webDetection.webEntities.forEach(webEntity => {
    console.log(`  Description: ${webEntity.description}`);
    console.log(`  Score: ${webEntity.score}`);
  });
}

if (webDetection.bestGuessLabels.length) {
  console.log(
    `Best guess labels found: ${webDetection.bestGuessLabels.length}`
  );
  webDetection.bestGuessLabels.forEach(label => {
    console.log(`  Label: ${label.label}`);
  });
}

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'path/to/your/image.jpg'

function detect_web($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $image = file_get_contents($path);
    $response = $imageAnnotator->webDetection($image);
    $web = $response->getWebDetection();

    // Print best guess labels
    printf('%d best guess labels found' . PHP_EOL,
        count($web->getBestGuessLabels()));
    foreach ($web->getBestGuessLabels() as $label) {
        printf('Best guess label: %s' . PHP_EOL, $label->getLabel());
    }
    print(PHP_EOL);

    // Print pages with matching images
    printf('%d pages with matching images found' . PHP_EOL,
        count($web->getPagesWithMatchingImages()));
    foreach ($web->getPagesWithMatchingImages() as $page) {
        printf('URL: %s' . PHP_EOL, $page->getUrl());
    }
    print(PHP_EOL);

    // Print full matching images
    printf('%d full matching images found' . PHP_EOL,
        count($web->getFullMatchingImages()));
    foreach ($web->getFullMatchingImages() as $fullMatchingImage) {
        printf('URL: %s' . PHP_EOL, $fullMatchingImage->getUrl());
    }
    print(PHP_EOL);

    // Print partial matching images
    printf('%d partial matching images found' . PHP_EOL,
        count($web->getPartialMatchingImages()));
    foreach ($web->getPartialMatchingImages() as $partialMatchingImage) {
        printf('URL: %s' . PHP_EOL, $partialMatchingImage->getUrl());
    }
    print(PHP_EOL);

    // Print visually similar images
    printf('%d visually similar images found' . PHP_EOL,
        count($web->getVisuallySimilarImages()));
    foreach ($web->getVisuallySimilarImages() as $visuallySimilarImage) {
        printf('URL: %s' . PHP_EOL, $visuallySimilarImage->getUrl());
    }
    print(PHP_EOL);

    // Print web entities
    printf('%d web entities found' . PHP_EOL,
        count($web->getWebEntities()));
    foreach ($web->getWebEntities() as $entity) {
        printf('Description: %s, Score %s' . PHP_EOL,
            $entity->getDescription(),
            $entity->getScore());
    }

    $imageAnnotator->close();
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def detect_web(path):
    """Detects web annotations given an image."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.web_detection(image=image)
    annotations = response.web_detection

    if annotations.best_guess_labels:
        for label in annotations.best_guess_labels:
            print('\nBest guess label: {}'.format(label.label))

    if annotations.pages_with_matching_images:
        print('\n{} Pages with matching images found:'.format(
            len(annotations.pages_with_matching_images)))

        for page in annotations.pages_with_matching_images:
            print('\n\tPage url   : {}'.format(page.url))

            if page.full_matching_images:
                print('\t{} Full Matches found: '.format(
                       len(page.full_matching_images)))

                for image in page.full_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

            if page.partial_matching_images:
                print('\t{} Partial Matches found: '.format(
                       len(page.partial_matching_images)))

                for image in page.partial_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

    if annotations.web_entities:
        print('\n{} Web entities found: '.format(
            len(annotations.web_entities)))

        for entity in annotations.web_entities:
            print('\n\tScore      : {}'.format(entity.score))
            print(u'\tDescription: {}'.format(entity.description))

    if annotations.visually_similar_images:
        print('\n{} visually similar images found:\n'.format(
            len(annotations.visually_similar_images)))

        for image in annotations.visually_similar_images:
            print('\tImage url    : {}'.format(image.url))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Ruby.

# image_path = "Path to local image file, eg. './image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision.image_annotator

response = image_annotator.web_detection(
  image:       image_path,
  max_results: 15 # optional, defaults to 10
)

response.responses.each do |res|
  res.web_detection.web_entities.each do |entity|
    puts entity.description
  end

  res.web_detection.full_matching_images.each do |match|
    puts match.url
  end
end

Détecter les entités Web avec une image distante

Pour plus de facilité, l'API Vision peut directement détecter des fonctionnalités dans un fichier image de Google Cloud Storage ou sur le Web sans envoyer le contenu du fichier image dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

gs://cloud-samples-data/vision/web/carnaval.jpeg
  • cloud-storage-image-uri : chemin d'accès à un fichier image valide dans un bucket Cloud Storage. Il faut au minimum disposer des droits en lecture sur le fichier. Exemple :
    • gs://storage-bucket/filename.jpg

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "maxResults": 10,
          "type": "WEB_DETECTION"
        },
      ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Réponse :

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage C#.

// Specify a Google Cloud Storage uri for the image
// or a publicly accessible HTTP or HTTPS uri.
var image = Image.FromUri(uri);
var client = ImageAnnotatorClient.Create();
WebDetection annotation = client.DetectWebInformation(image);
foreach (var matchingImage in annotation.FullMatchingImages)
{
    Console.WriteLine("MatchingImage Score:\t{0}\tUrl:\t{1}",
        matchingImage.Score, matchingImage.Url);
}
foreach (var page in annotation.PagesWithMatchingImages)
{
    Console.WriteLine("PageWithMatchingImage Score:\t{0}\tUrl:\t{1}",
        page.Score, page.Url);
}
foreach (var matchingImage in annotation.PartialMatchingImages)
{
    Console.WriteLine("PartialMatchingImage Score:\t{0}\tUrl:\t{1}",
        matchingImage.Score, matchingImage.Url);
}
foreach (var entity in annotation.WebEntities)
{
    Console.WriteLine("WebEntity Score:\t{0}\tId:\t{1}\tDescription:\t{2}",
        entity.Score, entity.EntityId, entity.Description);
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// detectWeb gets image properties from the Vision API for an image at the given file path.
func detectWebURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	web, err := client.DetectWeb(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Web properties:")
	if len(web.FullMatchingImages) != 0 {
		fmt.Fprintln(w, "\tFull image matches:")
		for _, full := range web.FullMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", full.Url)
		}
	}
	if len(web.PagesWithMatchingImages) != 0 {
		fmt.Fprintln(w, "\tPages with this image:")
		for _, page := range web.PagesWithMatchingImages {
			fmt.Fprintf(w, "\t\t%s\n", page.Url)
		}
	}
	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "\tEntities:")
		fmt.Fprintln(w, "\t\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}
	if len(web.BestGuessLabels) != 0 {
		fmt.Fprintln(w, "\tBest guess labels:")
		for _, label := range web.BestGuessLabels {
			fmt.Fprintf(w, "\t\t%s\n", label.Label)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.WebDetection;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectWebDetectionsGcs {

  public static void detectWebDetectionsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectWebDetectionsGcs(filePath);
  }

  // Detects whether the remote image on Google Cloud Storage has features you would want to
  // moderate.
  public static void detectWebDetectionsGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.WEB_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // Search the web for usages of the image. You could use these signals later
        // for user input moderation or linking external references.
        // For a full list of available annotations, see http://g.co/cloud/vision/docs
        WebDetection annotation = res.getWebDetection();
        System.out.println("Entity:Id:Score");
        System.out.println("===============");
        for (WebDetection.WebEntity entity : annotation.getWebEntitiesList()) {
          System.out.println(
              entity.getDescription() + " : " + entity.getEntityId() + " : " + entity.getScore());
        }
        for (WebDetection.WebLabel label : annotation.getBestGuessLabelsList()) {
          System.out.format("%nBest guess label: %s", label.getLabel());
        }
        System.out.println("%nPages with matching images: Score%n==");
        for (WebDetection.WebPage page : annotation.getPagesWithMatchingImagesList()) {
          System.out.println(page.getUrl() + " : " + page.getScore());
        }
        System.out.println("%nPages with partially matching images: Score%n==");
        for (WebDetection.WebImage image : annotation.getPartialMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with fully matching images: Score%n==");
        for (WebDetection.WebImage image : annotation.getFullMatchingImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
        System.out.println("%nPages with visually similar images: Score%n==");
        for (WebDetection.WebImage image : annotation.getVisuallySimilarImagesList()) {
          System.out.println(image.getUrl() + " : " + image.getScore());
        }
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.


// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Detect similar images on the web to a remote file
const [result] = await client.webDetection(`gs://${bucketName}/${fileName}`);
const webDetection = result.webDetection;
if (webDetection.fullMatchingImages.length) {
  console.log(
    `Full matches found: ${webDetection.fullMatchingImages.length}`
  );
  webDetection.fullMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.partialMatchingImages.length) {
  console.log(
    `Partial matches found: ${webDetection.partialMatchingImages.length}`
  );
  webDetection.partialMatchingImages.forEach(image => {
    console.log(`  URL: ${image.url}`);
    console.log(`  Score: ${image.score}`);
  });
}

if (webDetection.webEntities.length) {
  console.log(`Web entities found: ${webDetection.webEntities.length}`);
  webDetection.webEntities.forEach(webEntity => {
    console.log(`  Description: ${webEntity.description}`);
    console.log(`  Score: ${webEntity.score}`);
  });
}

if (webDetection.bestGuessLabels.length) {
  console.log(
    `Best guess labels found: ${webDetection.bestGuessLabels.length}`
  );
  webDetection.bestGuessLabels.forEach(label => {
    console.log(`  Label: ${label.label}`);
  });
}

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_web_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->webDetection($path);
    $web = $response->getWebDetection();

    if ($web) {
        printf('%d best guess labels found' . PHP_EOL,
            count($web->getPagesWithMatchingImages()));
        foreach ($web->getBestGuessLabels() as $label) {
            printf('Best guess label: %s' . PHP_EOL, $label->getLabel());
        }
        print(PHP_EOL);

        // Print pages with matching images
        printf('%d pages with matching images found' . PHP_EOL,
            count($web->getPagesWithMatchingImages()));
        foreach ($web->getPagesWithMatchingImages() as $page) {
            printf('URL: %s' . PHP_EOL, $page->getUrl());
        }
        print(PHP_EOL);

        // Print full matching images
        printf('%d full matching images found' . PHP_EOL,
            count($web->getFullMatchingImages()));
        foreach ($web->getFullMatchingImages() as $fullMatchingImage) {
            printf('URL: %s' . PHP_EOL, $fullMatchingImage->getUrl());
        }
        print(PHP_EOL);

        // Print partial matching images
        printf('%d partial matching images found' . PHP_EOL,
            count($web->getPartialMatchingImages()));
        foreach ($web->getPartialMatchingImages() as $partialMatchingImage) {
            printf('URL: %s' . PHP_EOL, $partialMatchingImage->getUrl());
        }
        print(PHP_EOL);

        // Print visually similar images
        printf('%d visually similar images found' . PHP_EOL,
            count($web->getVisuallySimilarImages()));
        foreach ($web->getVisuallySimilarImages() as $visuallySimilarImage) {
            printf('URL: %s' . PHP_EOL, $visuallySimilarImage->getUrl());
        }
        print(PHP_EOL);

        // Print web entities
        printf('%d web entities found' . PHP_EOL,
            count($web->getWebEntities()));
        foreach ($web->getWebEntities() as $entity) {
            printf('Description: %s, Score: %f' . PHP_EOL,
                $entity->getDescription(),
                $entity->getScore());
        }
    } else {
        print('No Results.' . PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def detect_web_uri(uri):
    """Detects web annotations in the file located in Google Cloud Storage."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.web_detection(image=image)
    annotations = response.web_detection

    if annotations.best_guess_labels:
        for label in annotations.best_guess_labels:
            print('\nBest guess label: {}'.format(label.label))

    if annotations.pages_with_matching_images:
        print('\n{} Pages with matching images found:'.format(
            len(annotations.pages_with_matching_images)))

        for page in annotations.pages_with_matching_images:
            print('\n\tPage url   : {}'.format(page.url))

            if page.full_matching_images:
                print('\t{} Full Matches found: '.format(
                       len(page.full_matching_images)))

                for image in page.full_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

            if page.partial_matching_images:
                print('\t{} Partial Matches found: '.format(
                       len(page.partial_matching_images)))

                for image in page.partial_matching_images:
                    print('\t\tImage url  : {}'.format(image.url))

    if annotations.web_entities:
        print('\n{} Web entities found: '.format(
            len(annotations.web_entities)))

        for entity in annotations.web_entities:
            print('\n\tScore      : {}'.format(entity.score))
            print(u'\tDescription: {}'.format(entity.description))

    if annotations.visually_similar_images:
        print('\n{} visually similar images found:\n'.format(
            len(annotations.visually_similar_images)))

        for image in annotations.visually_similar_images:
            print('\tImage url    : {}'.format(image.url))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Ruby.

# image_path = "Google Cloud Storage URI, eg. 'gs://my-bucket/image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision.image_annotator

response = image_annotator.web_detection(
  image:       image_path,
  max_results: 15 # optional, defaults to 10
)

response.responses.each do |res|
  res.web_detection.web_entities.each do |entity|
    puts entity.description
  end

  res.web_detection.full_matching_images.each do |match|
    puts match.url
  end
end

gcloud

Pour effectuer une détection Web, utilisez la commande gcloud ml vision detect-web comme indiqué dans l'exemple suivant :

gcloud ml vision detect-web gs://cloud-samples-data/vision/web/carnaval.jpeg

Utiliser des métadonnées géographiques avec une image locale

L'API Vision peut accéder aux métadonnées de géomarquage de vos fichiers image pour renvoyer des pages et des entités Web plus pertinentes. Pour autoriser l'utilisation de la géomarque, indiquez 'includeGeoResults': true dans votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

gs://cloud-samples-data/vision/web/carnaval.jpeg
  • cloud-storage-image-uri : chemin d'accès à un fichier image valide dans un bucket Cloud Storage. Il faut au minimum disposer des droits en lecture sur le fichier. Exemple :
    • gs://storage-bucket/filename.jpg

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "type": "WEB_DETECTION"
        }
      ],
      "imageContext": {
        "webDetectionParams": {
          "includeGeoResults": true
          }
        }
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Réponse :

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// detectWebGeo detects geographic metadata from the Vision API for an image at the given file path.
func detectWebGeo(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	imageContext := &visionpb.ImageContext{
		WebDetectionParams: &visionpb.WebDetectionParams{
			IncludeGeoResults: true,
		},
	}
	web, err := client.DetectWeb(ctx, image, imageContext)
	if err != nil {
		return err
	}

	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "Entities:")
		fmt.Fprintln(w, "\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageContext;
import com.google.cloud.vision.v1.WebDetectionParams;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.Arrays;

public class DetectWebEntitiesIncludeGeoResults {

  public static void detectWebEntitiesIncludeGeoResults() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectWebEntitiesIncludeGeoResults(filePath);
  }

  // Find web entities given a local image.
  public static void detectWebEntitiesIncludeGeoResults(String filePath) throws IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      // Read in the local image
      ByteString contents = ByteString.readFrom(new FileInputStream(filePath));

      // Build the image
      Image image = Image.newBuilder().setContent(contents).build();

      // Enable `IncludeGeoResults`
      WebDetectionParams webDetectionParams =
          WebDetectionParams.newBuilder().setIncludeGeoResults(true).build();

      // Set the parameters for the image
      ImageContext imageContext =
          ImageContext.newBuilder().setWebDetectionParams(webDetectionParams).build();

      // Create the request with the image, imageContext, and the specified feature: web detection
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder()
              .addFeatures(Feature.newBuilder().setType(Type.WEB_DETECTION))
              .setImage(image)
              .setImageContext(imageContext)
              .build();

      // Perform the request
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(Arrays.asList(request));

      // Display the results
      response.getResponsesList().stream()
          .forEach(
              r ->
                  r.getWebDetection().getWebEntitiesList().stream()
                      .forEach(
                          entity -> {
                            System.out.format("Description: %s%n", entity.getDescription());
                            System.out.format("Score: %f%n", entity.getScore());
                          }));
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

const request = {
  image: {
    source: {
      filename: fileName,
    },
  },
  imageContext: {
    webDetectionParams: {
      includeGeoResults: true,
    },
  },
};

// Detect similar images on the web to a local file
const [result] = await client.webDetection(request);
const webDetection = result.webDetection;
webDetection.webEntities.forEach(entity => {
  console.log(`Score: ${entity.score}`);
  console.log(`Description: ${entity.description}`);
});

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;
use Google\Cloud\Vision\V1\ImageContext;
use Google\Cloud\Vision\V1\WebDetectionParams;

// $path = 'path/to/your/image.jpg'

/**
 * Detect web entities on an image and include the image's geo metadata
 * to improve the quality of the detection.
 */
function detect_web_with_geo_metadata($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # enable include geo results
    $params = new WebDetectionParams();
    $params->setIncludeGeoResults(true);
    $imageContext = new ImageContext();
    $imageContext-> setWebDetectionParams($params);

    # annotate the image
    $image = file_get_contents($path);
    $response = $imageAnnotator->webDetection($image, ['imageContext' => $imageContext]);
    $web = $response->getWebDetection();

    if ($web && $web->getWebEntities()) {
        printf('%d web entities found:' . PHP_EOL,
            count($web->getWebEntities()));
        foreach ($web->getWebEntities() as $entity) {
            printf('Description: %s ' . PHP_EOL, $entity->getDescription());
            printf('Score: %f' . PHP_EOL, $entity->getScore());
            print(PHP_EOL);
        }
    }

    $imageAnnotator->close();
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def web_entities_include_geo_results(path):
    """Detects web annotations given an image, using the geotag metadata
    in the image to detect web entities."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    web_detection_params = vision.WebDetectionParams(
        include_geo_results=True)
    image_context = vision.ImageContext(
        web_detection_params=web_detection_params)

    response = client.web_detection(image=image, image_context=image_context)

    for entity in response.web_detection.web_entities:
        print('\n\tScore      : {}'.format(entity.score))
        print(u'\tDescription: {}'.format(entity.description))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

gcloud

Pour effectuer une détection Web, utilisez la commande gcloud ml vision detect-web comme indiqué dans l'exemple suivant :

gcloud ml vision detect-web gs://cloud-samples-data/vision/web/carnaval.jpeg

Utiliser des métadonnées géographiques avec une image distante

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Cloud Vision en langage Go.


// detectWebGeo detects geographic metadata from the Vision API for an image at the given file path.
func detectWebGeoURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	imageContext := &visionpb.ImageContext{
		WebDetectionParams: &visionpb.WebDetectionParams{
			IncludeGeoResults: true,
		},
	}
	web, err := client.DetectWeb(ctx, image, imageContext)
	if err != nil {
		return err
	}

	if len(web.WebEntities) != 0 {
		fmt.Fprintln(w, "Entities:")
		fmt.Fprintln(w, "\tEntity\t\tScore\tDescription")
		for _, entity := range web.WebEntities {
			fmt.Fprintf(w, "\t%-14s\t%-2.4f\t%s\n", entity.EntityId, entity.Score, entity.Description)
		}
	}

	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageContext;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.WebDetectionParams;
import java.io.IOException;
import java.util.Arrays;

public class DetectWebEntitiesIncludeGeoResultsGcs {

  public static void detectWebEntitiesIncludeGeoResultsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectWebEntitiesIncludeGeoResultsGcs(filePath);
  }

  // Find web entities given the remote image on Google Cloud Storage.
  public static void detectWebEntitiesIncludeGeoResultsGcs(String gcsPath) throws IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      // Set the image source to the given gs uri
      ImageSource imageSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
      // Build the image
      Image image = Image.newBuilder().setSource(imageSource).build();

      // Enable `IncludeGeoResults`
      WebDetectionParams webDetectionParams =
          WebDetectionParams.newBuilder().setIncludeGeoResults(true).build();

      // Set the parameters for the image
      ImageContext imageContext =
          ImageContext.newBuilder().setWebDetectionParams(webDetectionParams).build();

      // Create the request with the image, imageContext, and the specified feature: web detection
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder()
              .addFeatures(Feature.newBuilder().setType(Feature.Type.WEB_DETECTION))
              .setImage(image)
              .setImageContext(imageContext)
              .build();

      // Perform the request
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(Arrays.asList(request));

      // Display the results
      response.getResponsesList().stream()
          .forEach(
              r ->
                  r.getWebDetection().getWebEntitiesList().stream()
                      .forEach(
                          entity -> {
                            System.out.format("Description: %s%n", entity.getDescription());
                            System.out.format("Score: %f%n", entity.getScore());
                          }));
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

const request = {
  image: {
    source: {
      imageUri: `gs://${bucketName}/${fileName}`,
    },
  },
  imageContext: {
    webDetectionParams: {
      includeGeoResults: true,
    },
  },
};

// Detect similar images on the web to a remote file
const [result] = await client.webDetection(request);
const webDetection = result.webDetection;
webDetection.webEntities.forEach(entity => {
  console.log(`Score: ${entity.score}`);
  console.log(`Description: ${entity.description}`);
});

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;
use Google\Cloud\Vision\V1\ImageContext;
use Google\Cloud\Vision\V1\WebDetectionParams;

// $path = 'gs://path/to/your/image.jpg'

/**
 * Detect web entities on an image and include the image's geo metadata
 * to improve the quality of the detection.
 */
function detect_web_with_geo_metadata_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # enable include geo results
    $params = new WebDetectionParams();
    $params->setIncludeGeoResults(true);
    $imageContext = new ImageContext();
    $imageContext-> setWebDetectionParams($params);

    # annotate the image
    $response = $imageAnnotator->webDetection($path, ['imageContext' => $imageContext]);
    $web = $response->getWebDetection();

    if ($web) {
        printf('%d web entities found:' . PHP_EOL,
            count($web->getWebEntities()));
        foreach ($web->getWebEntities() as $entity) {
            printf('Description: %s ' . PHP_EOL, $entity->getDescription());
            printf('Score: %f' . PHP_EOL, $entity->getScore());
            print(PHP_EOL);
        }
    } else {
        print('No Results.' . PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

def web_entities_include_geo_results_uri(uri):
    """Detects web annotations given an image in the file located in
    Google Cloud Storage., using the geotag metadata in the image to
    detect web entities."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()

    image = vision.Image()
    image.source.image_uri = uri

    web_detection_params = vision.WebDetectionParams(
        include_geo_results=True)
    image_context = vision.ImageContext(
        web_detection_params=web_detection_params)

    response = client.web_detection(image=image, image_context=image_context)

    for entity in response.web_detection.web_entities:
        print('\n\tScore      : {}'.format(entity.score))
        print(u'\tDescription: {}'.format(entity.description))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Essayer

Essayez la détection d'entités Web ci-dessous. Vous pouvez utiliser l'image déjà spécifiée (gs://cloud-samples-data/vision/web/carnaval.jpeg) ou spécifier votre propre image à la place. Pour envoyer la requête, cliquez sur Exécuter.

Répétez la requête avec la valeur includeGeoResults définie sur "false".

Image de carnaval
Crédit image : Quinten de Graaf sur Unsplash.