Chat multi-turno

Questa pagina mostra come inviare prompt di chat a un modello Gemini utilizzando la console Google Cloud, l'API REST e gli SDK supportati.

Per scoprire come aggiungere immagini e altri contenuti multimediali alla tua richiesta, consulta Comprensione delle immagini.

Per un elenco delle lingue supportate da Gemini, vedi Lingue supportate.


Per esplorare le API e i modelli di IA generativa disponibili su Vertex AI, vai su Model Garden nella console Google Cloud.

Vai a Model Garden


Se stai cercando un modo per usare Gemini direttamente dal tuo dispositivo mobile app web, consulta le SDK Vertex AI per Firebase per App per Android, Swift, web e Flutter.

Per eseguire test e iterazioni dei prompt di chat, ti consigliamo di utilizzare la nella console Google Cloud. Per inviare prompt al modello in modo programmatico, puoi utilizzare l'API REST, l'SDK Vertex AI per Python o una delle altre librerie supportate e SDK mostrati nelle seguenti schede.

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta SDK Vertex AI per Python documentazione di riferimento dell'API.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte flussi di dati oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo che sono stati generati tutti i token di output.

Per una risposta in modalità flusso, utilizza il parametro stream in generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Per una risposta non in streaming, rimuovi il parametro o impostalo su False.

Codice di esempio

import vertexai

from vertexai.generative_models import GenerativeModel, ChatSession

# TODO(developer): Update and un-comment below line
# project_id = "PROJECT_ID"

vertexai.init(project=project_id, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-001")

chat = model.start_chat()

def get_chat_response(chat: ChatSession, prompt: str) -> str:
    text_response = []
    responses = chat.send_message(prompt, stream=True)
    for chunk in responses:
        text_response.append(chunk.text)
    return "".join(text_response)

prompt = "Hello."
print(get_chat_response(chat, prompt))

prompt = "What are all the colors in a rainbow?"
print(get_chat_response(chat, prompt))

prompt = "Why does it appear when it rains?"
print(get_chat_response(chat, prompt))

C#

Prima di provare questo esempio, segui le istruzioni di configurazione C# in Vertex AI quickstart. Per ulteriori informazioni, consulta il documento documentazione di riferimento C#.

Per eseguire l'autenticazione su Vertex AI, configura l'impostazione predefinita dell'applicazione Credenziali. Per ulteriori informazioni, consulta la sezione Configurazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte flussi di dati oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo che sono stati generati tutti i token di output.

Per una risposta in modalità flusso, utilizza StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Per una risposta non in streaming, utilizza la classe GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Per ulteriori informazioni su come il server può trasmettere le risposte in streaming, consulta RPC per i flussi di dati.

Codice di esempio


using Google.Cloud.AIPlatform.V1;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;

public class MultiTurnChatSample
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        // Create a chat session to keep track of the context
        ChatSession chatSession = new ChatSession($"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}", location);

        string prompt = "Hello.";
        Console.WriteLine($"\nUser: {prompt}");

        string response = await chatSession.SendMessageAsync(prompt);
        Console.WriteLine($"Response: {response}");

        prompt = "What are all the colors in a rainbow?";
        Console.WriteLine($"\nUser: {prompt}");

        response = await chatSession.SendMessageAsync(prompt);
        Console.WriteLine($"Response: {response}");

        prompt = "Why does it appear when it rains?";
        Console.WriteLine($"\nUser: {prompt}");

        response = await chatSession.SendMessageAsync(prompt);
        Console.WriteLine($"Response: {response}");

        return response;
    }

    private class ChatSession
    {
        private readonly string _modelPath;
        private readonly PredictionServiceClient _predictionServiceClient;

        private readonly List<Content> _contents;

        public ChatSession(string modelPath, string location)
        {
            _modelPath = modelPath;

            _predictionServiceClient = new PredictionServiceClientBuilder
            {
                Endpoint = $"{location}-aiplatform.googleapis.com"
            }.Build();

            // Initialize contents to send over in every request.
            _contents = new List<Content>();
        }

        public async Task<string> SendMessageAsync(string prompt)
        {
            var content = new Content
            {
                Role = "USER",
                Parts =
                {
                    new Part { Text = prompt }
                }
            };
            _contents.Add(content);

            var generateContentRequest = new GenerateContentRequest
            {
                Model = _modelPath,
                GenerationConfig = new GenerationConfig
                {
                    Temperature = 0.9f,
                    TopP = 1,
                    TopK = 32,
                    CandidateCount = 1,
                    MaxOutputTokens = 2048
                }
            };
            generateContentRequest.Contents.AddRange(_contents);

            GenerateContentResponse response = await _predictionServiceClient.GenerateContentAsync(generateContentRequest);

            _contents.Add(response.Candidates[0].Content);

            return response.Candidates[0].Content.Parts[0].Text;
        }
    }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nella documentazione sull'IA generativa rapida utilizzando l'SDK Node.js. Per maggiori informazioni, consulta la documentazione di riferimento dell'SDK Node.js per Gemini documentazione.

Per eseguire l'autenticazione su Vertex AI, configura l'impostazione predefinita dell'applicazione Credenziali. Per ulteriori informazioni, consulta la sezione Configurazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte flussi di dati oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo che sono stati generati tutti i token di output.

Per una risposta in modalità flusso, utilizza generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Per una risposta non in streaming, utilizza la classe generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Codice di esempio

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function createStreamChat(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
  });

  const chat = generativeModel.startChat({});
  const chatInput1 = 'How can I learn more about that?';

  console.log(`User: ${chatInput1}`);

  const result1 = await chat.sendMessageStream(chatInput1);
  for await (const item of result1.stream) {
    console.log(item.candidates[0].content.parts[0].text);
  }
}

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java in Vertex AI quickstart. Per ulteriori informazioni, consulta il documento documentazione di riferimento dell'SDK Java per Gemini.

Per eseguire l'autenticazione su Vertex AI, configura l'impostazione predefinita dell'applicazione Credenziali. Per ulteriori informazioni, consulta la sezione Configurazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte flussi di dati oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo che sono stati generati tutti i token di output.

Per una risposta in modalità flusso, utilizza generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Per una risposta non in streaming, utilizza la classe generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Codice di esempio

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ChatSession;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class ChatDiscussion {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    chatDiscussion(projectId, location, modelName);
  }

  // Ask interrelated questions in a row using a ChatSession object.
  public static void chatDiscussion(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerateContentResponse response;

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      // Create a chat session to be used for interactive conversation.
      ChatSession chatSession = new ChatSession(model);

      response = chatSession.sendMessage("Hello.");
      System.out.println(ResponseHandler.getText(response));

      response = chatSession.sendMessage("What are all the colors in a rainbow?");
      System.out.println(ResponseHandler.getText(response));

      response = chatSession.sendMessage("Why does it appear when it rains?");
      System.out.println(ResponseHandler.getText(response));
      System.out.println("Chat Ended.");
    }
  }
}

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go in Vertex AI quickstart. Per ulteriori informazioni, consulta il documento documentazione di riferimento dell'SDK Go per Gemini.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta la sezione Configurazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte flussi di dati oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo che sono stati generati tutti i token di output.

Per una risposta in modalità flusso, utilizza GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Per una risposta non di streaming, utilizza il metodo GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Codice di esempio

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

func makeChatRequests(ctx context.Context, w io.Writer, projectID, region, modelName string) error {
	client, err := genai.NewClient(ctx, projectID, region)

	if err != nil {
		return fmt.Errorf("error creating client: %w", err)
	}
	defer client.Close()

	gemini := client.GenerativeModel(modelName)
	chat := gemini.StartChat()

	send := func(message string) error {
		r, err := chat.SendMessage(ctx, genai.Text(message))
		if err != nil {
			return err
		}
		rb, err := json.MarshalIndent(r, "", "  ")
		if err != nil {
			return err
		}
		fmt.Fprintln(w, string(rb))
		return nil
	}

	if err := send("Hello"); err != nil {
		return err
	}
	if err := send("What are all the colors in a rainbow?"); err != nil {
		return err
	}
	return send("Why does it appear when it rains?")
}

REST

Dopo configurare l'ambiente, puoi usare REST per testare un prompt di testo. Il seguente esempio invia una richiesta al publisher endpoint del modello.

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • GENERATE_RESPONSE_METHOD: il tipo di risposta che deve essere generato dal modello. Scegli un metodo che generi il modo in cui vuoi che venga restituita la risposta del modello:
    • streamGenerateContent: la risposta viene riprodotta in streaming durante la generazione per ridurre la percezione della latenza per un pubblico umano.
    • generateContent: la risposta viene restituita dopo che è stata completamente generata.
  • LOCATION: la regione in cui elaborare la richiesta. Disponibile sono le seguenti:

    Fai clic per espandere un elenco parziale delle regioni disponibili

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: il tuo ID progetto.
  • MODEL_ID: l'ID del modello multimodale che vuoi utilizzare. Ecco alcune opzioni:
    • gemini-1.0-pro-002
    • gemini-1.0-pro-vision-001
    • gemini-1.5-pro-001
    • gemini-1.5-flash
  • TEXT1
    Le istruzioni testuali da includere in il primo prompt della conversazione in più passaggi. Ad esempio, What are all the colors in a rainbow?
  • TEXT2
    Le istruzioni testuali da includere in nel secondo prompt. Ad esempio, Why does it appear when it rains?
  • TEMPERATURE: La temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando topP e topK. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono una risposta meno aperta o creativa, mentre temperature più alte possono portare a risultati più diversificati o creativi. Una temperatura di 0 significa che vengono sempre selezionati i token con la probabilità più alta. In questo caso, le risposte per un determinato sono per lo più deterministici, ma è ancora possibile una piccola variazione.

    Se il modello restituisce una risposta troppo generica, troppo breve, oppure fornisce una risposta di riserva di risposta, prova ad aumentare la temperatura.

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

cat > request.json << 'EOF'
{
  "contents": [
    {
      "role": "user",
      "parts": { "text": "TEXT1" }
    },
    {
      "role": "model",
      "parts": { "text": "What a great question!" }
    },
    {
      "role": "user",
      "parts": { "text": "TEXT2" }
    }
  ],
  "generation_config": {
    "temperature": TEMPERATURE
  }
}
EOF

Quindi, esegui questo comando per inviare la richiesta REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD"

PowerShell

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

@'
{
  "contents": [
    {
      "role": "user",
      "parts": { "text": "TEXT1" }
    },
    {
      "role": "model",
      "parts": { "text": "What a great question!" }
    },
    {
      "role": "user",
      "parts": { "text": "TEXT2" }
    }
  ],
  "generation_config": {
    "temperature": TEMPERATURE
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Quindi, esegui questo comando per inviare la richiesta REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente.

. Tieni presente quanto segue nell'URL di questo esempio:
    .
  • Utilizza la generateContent per richiedere che la risposta venga restituita dopo la sua completa generazione. Per ridurre la percezione della latenza per un pubblico umano, trasmetti la risposta in tempo reale generati utilizzando streamGenerateContent .
  • L'ID modello multimodale si trova alla fine dell'URL prima del metodo (ad esempio, gemini-1.5-flash o gemini-1.0-pro-vision). Questo esempio potrebbe supportare altri modelli di machine learning.

Console

Per utilizzare Vertex AI Studio per inviare un prompt di chat nel Nella console Google Cloud, segui questi passaggi:

  1. Nella sezione Vertex AI della console Google Cloud, vai a la pagina Vertex AI Studio.

    Vai a Vertex AI Studio

  2. In Avvia una conversazione, fai clic su Chat di testo.
  3. (Facoltativo) Configura il modello e i parametri:

    • Modello: seleziona Gemini Pro.
    • Regione: seleziona la regione che vuoi utilizzare.
    • Temperatura: utilizza il cursore o la casella di testo per inserire un valore per la temperatura dell'acqua.

      La temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando topP e topK. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono una risposta meno aperta o creativa, mentre temperature più alte possono portare a risultati più diversificati o creativi. Una temperatura di 0 significa che vengono sempre selezionati i token con la probabilità più alta. In questo caso, le risposte per un determinato sono per lo più deterministici, ma è ancora possibile una piccola variazione.

      Se il modello restituisce una risposta troppo generica, troppo breve, oppure fornisce una risposta di riserva di risposta, prova ad aumentare la temperatura.

    • Limite di token di output. Utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per il parametro limite massimo di output.

      Numero massimo di token che possono essere generati nella risposta. Un token è di circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.

      Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe diverse.

    • Aggiungi una sequenza di interruzioni: facoltativo. Inserisci una sequenza di interruzioni, ovvero una serie che includono spazi. Se il modello incontra una sequenza di interruzioni, la generazione della risposta si interrompe. La sequenza di interruzioni non è inclusa nella risposta e puoi aggiungere fino a cinque sequenze di interruzioni.
  4. (Facoltativo) Per configurare parametri avanzati, fai clic su Avanzato e configurala come segue: .

    Fai clic per espandere le configurazioni avanzate

    • Top-K: utilizza il cursore o la casella di testo per inserire un valore per top-K.

      Top-K cambia il modo in cui il modello seleziona i token per l'output. Un top-K di 1 significa che il successivo token selezionato è il più probabile tra tutti nel vocabolario del modello (chiamato anche decodifica greedy), mentre una top-K di 3 significa che il token successivo viene selezionato tra i tre probabili token utilizzando la temperatura.

      Per ogni passaggio di selezione dei token, vengono mostrati i token top-K con il vengono campionate. Quindi i token vengono ulteriormente filtrati in base a top-P con il token finale selezionato utilizzando il campionamento della temperatura.

      Specifica un valore più basso per risposte meno casuali e un valore più alto per più risposte risposte casuali.

    • Top-P: utilizza il cursore o la casella di testo per inserire un valore per top-P. I token vengono selezionati dal più probabile al meno probabile fino alla somma dei loro le probabilità equivalgono al valore di top-P. Per ottenere risultati meno variabili, imposta top-P su 0.
    • Attiva grounding: aggiungi un'origine di grounding e un percorso per personalizzare questa funzionalità.
  5. Inserisci il prompt di testo nel riquadro Prompt. Il modello utilizza i messaggi precedenti come contesto per le nuove risposte.
  6. (Facoltativo) Per visualizzare il numero di token di testo, fai clic su Visualizza token. Puoi visualizzare i token o gli ID token del tuo prompt di testo.
    • Per visualizzare nel prompt di testo i token evidenziati con colori diversi che contrassegnano il confine di ciascun ID token, fai clic su da ID token a testo. I token multimediali non sono supportati.
    • Per visualizzare gli ID token, fai clic su ID token.

      Per chiudere il riquadro dello strumento tokenizzatore, fai clic sulla X o fai clic all'esterno del riquadro.

  7. Fai clic su Invia.
  8. (Facoltativo) Per salvare il prompt in I miei prompt, fai clic su Salva.
  9. (Facoltativo) Per ottenere il codice Python o un comando curl per il prompt, fai clic su Ricevi codice.
  10. (Facoltativo) Per cancellare tutti i messaggi precedenti, fai clic su Cancella conversazione

Puoi utilizzare le istruzioni di sistema per orientare il comportamento del modello in base a una per esigenze o casi d'uso specifici. Ad esempio, puoi definire un utente tipo o un ruolo per un chatbot che risponde alle richieste dell'assistenza clienti. Per ulteriori informazioni, vedi il esempi di codice per le istruzioni di sistema.

Passaggi successivi