Document understanding

Puoi aggiungere documenti (file PDF e TXT) alle richieste di Gemini per eseguire attività che richiedono la comprensione dei contenuti dei documenti inclusi. Questa pagina mostra come aggiungere file PDF alle tue richieste a Gemini in Vertex AI mediante la console Google Cloud e l'API Vertex AI.

Modelli supportati

Nella tabella seguente sono elencati i modelli che supportano la comprensione dei documenti:

Modello Dettagli sulla modalità PDF

Gemini 1.5 Flash

Vai alla scheda del modello Gemini 1.5 Flash

Numero massimo di pagine per PDF: 1000

Dimensioni massime del file PDF: 30 MB

Gemini 1.5 Pro

Vai alla scheda del modello Gemini 1.5 Pro

Pagine massime per PDF: 1000

Dimensioni massime del file PDF: 30 MB

Gemini 1.0 Pro Vision

Vai alla scheda del modello Gemini 1.0 Pro Vision

Pagine massime per prompt: 16

Dimensioni massime del file PDF: 30 MB

Per un elenco delle lingue supportate dai modelli Gemini, consulta le informazioni sui modelli Google. Per apprendere di più su come progettare prompt multimodali, consulta Progettare prompt multimodali. Se stai cercando un modo per usare Gemini direttamente dal tuo dispositivo mobile app web, consulta le Vertex AI negli SDK Firebase per App per Android, Swift, web e Flutter.

Aggiungere documenti a una richiesta

Il seguente esempio di codice mostra come includere un PDF in una richiesta di prompt. Questo esempio PDF funziona con tutti i modelli multimodali di Gemini.

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta in modalità flusso, utilizza il parametro stream in generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Per una risposta non in streaming, rimuovi il parametro o impostalo su False.

Codice di esempio

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update project_id and location
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = """
You are a very professional document summarization specialist.
Please summarize the given document.
"""

pdf_file = Part.from_uri(
    uri="gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
    mime_type="application/pdf",
)
contents = [pdf_file, prompt]

response = model.generate_content(contents)
print(response.text)

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java in Vertex AI Guida rapida. Per ulteriori informazioni, consulta la sezione Vertex AI documentazione di riferimento dell'SDK Java per Gemini.

Per eseguire l'autenticazione su Vertex AI, configura il valore predefinito dell'applicazione Credenziali. Per ulteriori informazioni, vedi Configurare l'autenticazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Per una risposta non in streaming, utilizza il metodo generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Codice di esempio


import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class PdfInput {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    pdfInput(projectId, location, modelName);
  }

  // Analyzes the given video input.
  public static String pdfInput(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String pdfUri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "You are a very professional document summarization specialist.\n"
                  + "Please summarize the given document.",
              PartMaker.fromMimeTypeAndData("application/pdf", pdfUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);
      return output;
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nella documentazione sull'IA generativa rapida utilizzando l'SDK Node.js. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Node.js per Gemini.

Per eseguire l'autenticazione su Vertex AI, configura il valore predefinito dell'applicazione Credenziali. Per ulteriori informazioni, vedi Configurare l'autenticazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo che sono stati generati tutti i token di output.

Per una risposta in modalità flusso, utilizza generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Per una risposta non in streaming, utilizza il metodo generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Codice di esempio

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function analyze_pdf(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',
      mime_type: 'application/pdf',
    },
  };
  const textPart = {
    text: `
    You are a very professional document summarization specialist.
    Please summarize the given document.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Go

Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida introduttiva di Vertex AI. Per ulteriori informazioni, consulta la sezione Vertex AI documentazione di riferimento dell'SDK Go per Gemini.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta dinamica, utilizza il metodo GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Per una risposta non di streaming, utilizza il metodo GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Codice di esempio

import (
	"context"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// generateContentFromPDF generates a response into the provided io.Writer, based upon the PDF
func generateContentFromPDF(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	part := genai.FileData{
		MIMEType: "application/pdf",
		FileURI:  "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
	}

	res, err := model.GenerateContent(ctx, part, genai.Text(`
			You are a very professional document summarization specialist.
    		Please summarize the given document.
	`))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

Prima di provare questo esempio, segui le istruzioni di configurazione C# in Vertex AI Guida rapida. Per ulteriori informazioni, consulta la documentazione di riferimento C# di Vertex AI.

Per autenticarti in Vertex AI, configura le credenziali predefinite per l'applicazione. Per ulteriori informazioni, consulta la sezione Configurazione per un ambiente di sviluppo locale.

Risposte dinamiche e non dinamiche

Puoi scegliere se il modello genera risposte in streaming oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.

Per una risposta in modalità flusso, utilizza StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Per una risposta non in streaming, utilizza il metodo GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Per ulteriori informazioni su come il server può trasmettere le risposte in streaming, consulta RPC per i flussi di dati.

Codice di esempio


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class PdfInput
{
    public async Task<string> SummarizePdf(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"You are a very professional document summarization specialist.
Please summarize the given document.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "application/pdf", FileUri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf" }}
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

REST

Dopo aver configurato l'ambiente, puoi utilizzare REST per testare un prompt di testo. Il seguente esempio invia una richiesta al publisher endpoint del modello.

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • LOCATION: la regione in cui elaborare richiesta. Inserisci una regione supportata. Per l'elenco completo delle regioni supportate, consulta Località disponibili.

    Fai clic per espandere un elenco parziale delle regioni disponibili

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: il tuo ID progetto.
  • FILE_URI: l'URI o l'URL del file da includere nel prompt. I valori accettabili sono:
    • URI bucket Cloud Storage: l'oggetto deve essere leggibile pubblicamente o risiedere in lo stesso progetto Google Cloud che invia la richiesta.
    • URL HTTP: l'URL del file deve essere pubblicamente leggibile. Puoi specificare un file video e fino a 10 file immagine per richiesta. I file e i documenti audio non possono superare i 15 MB.
    • URL del video di YouTube:il video di YouTube deve essere di proprietà dell'account utilizzato per accedere alla console Google Cloud o se è pubblico. È supportato un solo URL di video di YouTube per richiesta.

    Quando specifichi un fileURI, devi specificare anche il tipo di media (mimeType) del file.

    Se non hai un file PDF in Cloud Storage, puoi utilizzare quanto segue: file disponibile al pubblico: gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf con un tipo MIME application/pdf. Per visualizzare questo PDF: apri il PDF di esempio .

  • MIME_TYPE: Il tipo di supporto del file specificato in data o fileUri campi. I valori accettabili sono:

    Fai clic per espandere i tipi MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT: le istruzioni di testo da includere nel prompt. Ad esempio: You are a very professional document summarization specialist. Please summarize the given document.

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

Quindi, esegui questo comando per inviare la richiesta REST:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Salva il corpo della richiesta in un file denominato request.json. Esegui questo comando nel terminale per creare o sovrascrivere questo file nella directory corrente:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Quindi, esegui questo comando per inviare la richiesta REST:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente.

Tieni presente quanto segue nell'URL di questo esempio:
  • Utilizza il metodo generateContent per richiedere che la risposta venga restituita dopo essere stata completamente generata. Per ridurre la percezione della latenza per un pubblico umano, trasmetti la risposta in tempo reale generati utilizzando streamGenerateContent .
  • L'ID del modello multimodale si trova alla fine dell'URL prima del metodo (ad esempio gemini-1.5-flash o gemini-1.0-pro-vision). Questo sample potrebbe supportare anche altri modelli.

Console

Per inviare un prompt multimodale utilizzando la console Google Cloud, esegui la seguenti:

  1. Nella sezione Vertex AI della console Google Cloud, vai alla pagina Vertex AI Studio.

    Vai a Vertex AI Studio

  2. Fai clic su Apri formato libero.

  3. (Facoltativo) Configura il modello e i parametri:

    • Modello: seleziona un modello.
    • Regione: seleziona la regione che vuoi utilizzare.
    • Temperatura: utilizza il cursore o la casella di testo per inserire un valore per la temperatura dell'acqua.

      La temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando vengono applicati topP e topK. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature basse sono ideali per prompt che richiedono risposte meno aperte o creative, mentre le temperature più alte possono portare a risultati più diversificati o creativi. Una temperatura pari a 0 significa che vengono sempre selezionati i token con la probabilità più alta. In questo caso, le risposte per un determinato sono per lo più deterministici, ma è ancora possibile una piccola variazione.

      Se il modello restituisce una risposta troppo generica, troppo breve o fornisce una risposta di riserva, prova ad aumentare la temperatura.

    • Limite di token di output: utilizza il cursore o la casella di testo per inserire un valore per il limite di output massimo.

      Numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.

      Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe.

    • Aggiungi una sequenza di interruzioni: facoltativo. Inserisci una sequenza di interruzioni, ovvero una serie di caratteri che include spazi. Se il modello rileva un una sequenza di interruzioni, la generazione della risposta si interrompe. La sequenza di fermate non è inclusa nella risposta e puoi aggiungere fino a cinque sequenze di fermate.

  4. (Facoltativo) Per configurare parametri avanzati, fai clic su Avanzato e configurala come segue:

    Fai clic per espandere le configurazioni avanzate

    • Top-K: utilizza il cursore o la casella di testo per inserire un valore per top-K. (non supportato per Gemini 1.5).

      Top-K cambia il modo in cui il modello seleziona i token per l'output. Un top-K pari a 1 indica che il token successivo selezionato è il più probabile tra tutti i token nel vocabolario del modello (chiamato anche decodifica greedy). Un top-K pari a 3 indica invece che il token successivo viene selezionato tra i tre token più probabili utilizzando la temperatura.

      Per ogni passaggio di selezione dei token, vengono mostrati i token top-K con il vengono campionate. Quindi i token vengono ulteriormente filtrati in base a Top-P e il token finale viene selezionato utilizzando il campionamento con temperatura.

      Specifica un valore più basso per risposte meno casuali e un valore più alto per più risposte risposte casuali.

    • Top-P: utilizza il cursore o la casella di testo per inserire un valore per top-P. I token vengono selezionati dal più probabile al meno probabile finché la somma delle loro probabilità non corrisponde al valore di Top-P. Per ridurre al minimo la variabilità dei risultati, imposta Top-P su 0.
    • Risposte massime: utilizza il cursore o la casella di testo per inserire un valore per il numero di risposte da generare.
    • Risposte dinamiche: attiva questa opzione per stampare le risposte man mano che vengono generate.
    • Soglia del filtro di sicurezza: seleziona la soglia della probabilità di ricevere risposte potenzialmente dannose.
    • Abilita il grounding: il grounding non è supportato per i prompt multimodali.

  5. Fai clic su Inserisci file multimediali e seleziona un'origine per il file.

    Carica

    Seleziona il file che vuoi caricare e fai clic su Apri.

    Tramite URL

    Inserisci l'URL del file che vuoi utilizzare e fai clic su Inserisci.

    Cloud Storage

    Seleziona il bucket e poi il file del bucket che vuoi importare e fai clic su Seleziona.

    Google Drive

    1. Scegli un account e concedi il consenso a Vertex AI Studio per accedere al tuo account la prima volta che selezioni questa opzione. Puoi caricare più file con una dimensione totale massima di 10 MB. Un singolo file non può superare i 7 MB.
    2. Fai clic sul file che vuoi aggiungere.
    3. Fai clic su Seleziona.

      La miniatura del file viene visualizzata nel riquadro Prompt. Viene visualizzato anche il numero totale di token. Se i dati del prompt superano il limite di token, i token vengono troncati e non sono inclusi nell'elaborazione dei dati.

  6. Inserisci il prompt di testo nel riquadro Prompt.

  7. (Facoltativo) Per visualizzare ID token in testo e ID token, fai clic sul conteggio token nel riquadro Prompt.

  8. Fai clic su Invia.

  9. (Facoltativo) Per salvare il prompt in I miei prompt, fai clic su Salva.

  10. (Facoltativo) Per ottenere il codice Python o un comando curl per il tuo prompt, fai clic su Genera codice.

Imposta parametri del modello facoltativi

Ogni modello ha un insieme di parametri facoltativi che puoi impostare. Per ulteriori informazioni, consulta Parametri di generazione dei contenuti.

Requisiti dei documenti

I modelli multimodali Gemini supportano i seguenti tipi MIME dei documenti:

Tipo MIME documento Gemini 1.5 Flash Gemini 1.5 Pro Gemini 1.0 Pro Vision
PDF - application/pdf
Testo: text/plain

I PDF vengono trattati come immagini, quindi una singola pagina di un PDF viene considerata come una singola pagina. dell'immagine. Il numero di pagine consentite in un prompt è limitato al numero di immagini che il modello può supportare:

  • Gemini 1.0 Pro Vision: 16 pagine
  • Gemini 1.5 Pro e Gemini 1.5 Flash: 1000 pagine

Tokenizzazione PDF

I PDF vengono trattati come immagini, pertanto ogni pagina di un PDF viene tokenizzata nello stesso modo di un'immagine.

Inoltre, il costo dei PDF segue i prezzi delle immagini di Gemini. Ad esempio, se includi un PDF di due pagine in una chiamata all'API Gemini, comporta una tariffa di input per l'elaborazione di due immagini.

Tokenizzazione testo normale

I documenti in testo normale vengono tokenizzati come testo. Ad esempio, se includi un testo normale di 100 parole documento in una chiamata API Gemini, ti viene addebitata una tariffa di input per l'elaborazione di 100 parole.

Best practice per i PDF

Quando utilizzi i PDF, segui le best practice e le informazioni riportate di seguito per ottenere risultati ottimali:

  • Se il prompt contiene un singolo PDF, inseriscilo prima del prompt di testo nella richiesta.
  • Se hai un documento lungo, valuta la possibilità di suddividerlo in più PDF per elaborarlo.
  • Utilizza i PDF creati con testo visualizzato come testo anziché utilizzare il testo scansionate le immagini. Questo formato garantisce che il testo sia leggibile dalla macchina, in modo che sia più facile per il modello modificarlo, cercarlo e manipolarlo rispetto ai PDF di immagini acquisite. Questa prassi offre risultati ottimali quando si lavora con documenti con molto testo, come i contratti.

Limitazioni

Sebbene i modelli multimodali Gemini siano potenti in molti utilizzi multimodali, in questi casi, è importante comprendere i limiti dei modelli:

  • Ragionamento spaziale: i modelli non sono precisi nel localizzare testo o oggetti nei PDF. Potrebbero restituire solo i conteggi approssimativi di di oggetti strutturati.
  • Accuratezza: i modelli potrebbero avere allucinazioni durante l'interpretazione del testo scritto a mano nei documenti PDF.

Passaggi successivi