Modelli supportati
Nella tabella seguente sono elencati i modelli che supportano la comprensione dei documenti:
Modello | Dettagli sulla modalità PDF |
---|---|
Gemini 1.5 Flash Vai alla scheda del modello Gemini 1.5 Flash |
Numero massimo di pagine per PDF: 1000 Dimensioni massime del file PDF: 30 MB |
Gemini 1.5 Pro Vai alla scheda del modello Gemini 1.5 Pro |
Pagine massime per PDF: 1000 Dimensioni massime del file PDF: 30 MB |
Gemini 1.0 Pro Vision Vai alla scheda del modello Gemini 1.0 Pro Vision |
Pagine massime per prompt: 16 Dimensioni massime del file PDF: 30 MB |
Per un elenco delle lingue supportate dai modelli Gemini, consulta le informazioni sui modelli Google. Per apprendere di più su come progettare prompt multimodali, consulta Progettare prompt multimodali. Se stai cercando un modo per usare Gemini direttamente dal tuo dispositivo mobile app web, consulta le Vertex AI negli SDK Firebase per App per Android, Swift, web e Flutter.
Aggiungere documenti a una richiesta
Il seguente esempio di codice mostra come includere un PDF in una richiesta di prompt. Questo esempio PDF funziona con tutti i modelli multimodali di Gemini.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.
Risposte dinamiche e non dinamiche
Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.
Per una risposta in modalità flusso, utilizza il parametro stream
in
generate_content
.
response = model.generate_content(contents=[...], stream = True)
Per una risposta non in streaming, rimuovi il parametro o impostalo su
False
.
Codice di esempio
Java
Prima di provare questo esempio, segui le istruzioni per la configurazione di Java in Vertex AI Guida rapida. Per ulteriori informazioni, consulta la sezione Vertex AI documentazione di riferimento dell'SDK Java per Gemini.
Per eseguire l'autenticazione su Vertex AI, configura il valore predefinito dell'applicazione Credenziali. Per ulteriori informazioni, vedi Configurare l'autenticazione per un ambiente di sviluppo locale.
Risposte dinamiche e non dinamiche
Puoi scegliere se il modello genera risposte in streaming oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.
Per una risposta dinamica, utilizza il metodo
generateContentStream
.
public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
Per una risposta non in streaming, utilizza il metodo
generateContent
.
public GenerateContentResponse generateContent(Content content)
Codice di esempio
Node.js
Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nella documentazione sull'IA generativa rapida utilizzando l'SDK Node.js. Per ulteriori informazioni, consulta la documentazione di riferimento dell'SDK Node.js per Gemini.
Per eseguire l'autenticazione su Vertex AI, configura il valore predefinito dell'applicazione Credenziali. Per ulteriori informazioni, vedi Configurare l'autenticazione per un ambiente di sviluppo locale.
Risposte dinamiche e non dinamiche
Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo che sono stati generati tutti i token di output.
Per una risposta in modalità flusso, utilizza
generateContentStream
.
const streamingResp = await generativeModel.generateContentStream(request);
Per una risposta non in streaming, utilizza il metodo
generateContent
.
const streamingResp = await generativeModel.generateContent(request);
Codice di esempio
Go
Prima di provare questo esempio, segui le istruzioni di configurazione di Go nella guida introduttiva di Vertex AI. Per ulteriori informazioni, consulta la sezione Vertex AI documentazione di riferimento dell'SDK Go per Gemini.
Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Risposte dinamiche e non dinamiche
Puoi scegliere se il modello genera risposte in streaming o non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.
Per una risposta dinamica, utilizza il metodo
GenerateContentStream
.
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
Per una risposta non di streaming, utilizza il metodo GenerateContent
.
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
Codice di esempio
C#
Prima di provare questo esempio, segui le istruzioni di configurazione C# in Vertex AI Guida rapida. Per ulteriori informazioni, consulta la documentazione di riferimento C# di Vertex AI.
Per autenticarti in Vertex AI, configura le credenziali predefinite per l'applicazione. Per ulteriori informazioni, consulta la sezione Configurazione per un ambiente di sviluppo locale.
Risposte dinamiche e non dinamiche
Puoi scegliere se il modello genera risposte in streaming oppure risposte non in streaming. Per le risposte dinamiche, ricevi ogni risposta non appena viene generato il relativo token di output. Per le risposte non dinamiche, ricevi tutte le risposte dopo la generazione di tutti i token di output.
Per una risposta in modalità flusso, utilizza
StreamGenerateContent
.
public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
Per una risposta non in streaming, utilizza il metodo
GenerateContentAsync
.
public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
Per ulteriori informazioni su come il server può trasmettere le risposte in streaming, consulta RPC per i flussi di dati.
Codice di esempio
REST
Dopo aver configurato l'ambiente, puoi utilizzare REST per testare un prompt di testo. Il seguente esempio invia una richiesta al publisher endpoint del modello.
Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:
LOCATION
: la regione in cui elaborare richiesta. Inserisci una regione supportata. Per l'elenco completo delle regioni supportate, consulta Località disponibili.Fai clic per espandere un elenco parziale delle regioni disponibili
us-central1
us-west4
northamerica-northeast1
us-east4
us-west1
asia-northeast3
asia-southeast1
asia-northeast1
PROJECT_ID
: il tuo ID progetto.FILE_URI
: l'URI o l'URL del file da includere nel prompt. I valori accettabili sono:- URI bucket Cloud Storage: l'oggetto deve essere leggibile pubblicamente o risiedere in lo stesso progetto Google Cloud che invia la richiesta.
- URL HTTP: l'URL del file deve essere pubblicamente leggibile. Puoi specificare un file video e fino a 10 file immagine per richiesta. I file e i documenti audio non possono superare i 15 MB.
- URL del video di YouTube:il video di YouTube deve essere di proprietà dell'account utilizzato per accedere alla console Google Cloud o se è pubblico. È supportato un solo URL di video di YouTube per richiesta.
Quando specifichi un
fileURI
, devi specificare anche il tipo di media (mimeType
) del file.Se non hai un file PDF in Cloud Storage, puoi utilizzare quanto segue: file disponibile al pubblico:
gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf
con un tipo MIMEapplication/pdf
. Per visualizzare questo PDF: apri il PDF di esempio .MIME_TYPE
: Il tipo di supporto del file specificato indata
ofileUri
campi. I valori accettabili sono:Fai clic per espandere i tipi MIME
application/pdf
audio/mpeg
audio/mp3
audio/wav
image/png
image/jpeg
image/webp
text/plain
video/mov
video/mpeg
video/mp4
video/mpg
video/avi
video/wmv
video/mpegps
video/flv
TEXT
: le istruzioni di testo da includere nel prompt. Ad esempio:You are a very professional document summarization specialist. Please summarize the given document.
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
.
Esegui questo comando nel terminale per creare o sovrascrivere
questo file nella directory corrente:
cat > request.json << 'EOF' { "contents": { "role": "USER", "parts": [ { "fileData": { "fileUri": "FILE_URI", "mimeType": "MIME_TYPE" } }, { "text": "TEXT" } ] } } EOF
Quindi, esegui questo comando per inviare la richiesta REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
.
Esegui questo comando nel terminale per creare o sovrascrivere
questo file nella directory corrente:
@' { "contents": { "role": "USER", "parts": [ { "fileData": { "fileUri": "FILE_URI", "mimeType": "MIME_TYPE" } }, { "text": "TEXT" } ] } } '@ | Out-File -FilePath request.json -Encoding utf8
Quindi, esegui questo comando per inviare la richiesta REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente.
Tieni presente quanto segue nell'URL di questo esempio:- Utilizza il metodo
generateContent
per richiedere che la risposta venga restituita dopo essere stata completamente generata. Per ridurre la percezione della latenza per un pubblico umano, trasmetti la risposta in tempo reale generati utilizzandostreamGenerateContent
. - L'ID del modello multimodale si trova alla fine dell'URL prima del metodo
(ad esempio
gemini-1.5-flash
ogemini-1.0-pro-vision
). Questo sample potrebbe supportare anche altri modelli.
Console
Per inviare un prompt multimodale utilizzando la console Google Cloud, esegui la seguenti:Nella sezione Vertex AI della console Google Cloud, vai alla pagina Vertex AI Studio.
Fai clic su Apri formato libero.
(Facoltativo) Configura il modello e i parametri:
- Modello: seleziona un modello.
- Regione: seleziona la regione che vuoi utilizzare.
Temperatura: utilizza il cursore o la casella di testo per inserire un valore per la temperatura dell'acqua.
La temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando vengono applicati
topP
etopK
. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature basse sono ideali per prompt che richiedono risposte meno aperte o creative, mentre le temperature più alte possono portare a risultati più diversificati o creativi. Una temperatura pari a0
significa che vengono sempre selezionati i token con la probabilità più alta. In questo caso, le risposte per un determinato sono per lo più deterministici, ma è ancora possibile una piccola variazione.Se il modello restituisce una risposta troppo generica, troppo breve o fornisce una risposta di riserva, prova ad aumentare la temperatura.
Limite di token di output: utilizza il cursore o la casella di testo per inserire un valore per il limite di output massimo.
Numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.
Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe.
Aggiungi una sequenza di interruzioni: facoltativo. Inserisci una sequenza di interruzioni, ovvero una serie di caratteri che include spazi. Se il modello rileva un una sequenza di interruzioni, la generazione della risposta si interrompe. La sequenza di fermate non è inclusa nella risposta e puoi aggiungere fino a cinque sequenze di fermate.
(Facoltativo) Per configurare parametri avanzati, fai clic su Avanzato e configurala come segue:
Fai clic per espandere le configurazioni avanzate
Top-K: utilizza il cursore o la casella di testo per inserire un valore per top-K. (non supportato per Gemini 1.5).
Top-K cambia il modo in cui il modello seleziona i token per l'output. Un top-K pari a1
indica che il token successivo selezionato è il più probabile tra tutti i token nel vocabolario del modello (chiamato anche decodifica greedy). Un top-K pari a3
indica invece che il token successivo viene selezionato tra i tre token più probabili utilizzando la temperatura.Per ogni passaggio di selezione dei token, vengono mostrati i token top-K con il vengono campionate. Quindi i token vengono ulteriormente filtrati in base a Top-P e il token finale viene selezionato utilizzando il campionamento con temperatura.
Specifica un valore più basso per risposte meno casuali e un valore più alto per più risposte risposte casuali.
- Top-P: utilizza il cursore o la casella di testo per inserire un valore per top-P.
I token vengono selezionati dal più probabile al meno probabile finché la somma delle loro probabilità non corrisponde al valore di Top-P. Per ridurre al minimo la variabilità dei risultati,
imposta Top-P su
0
. - Risposte massime: utilizza il cursore o la casella di testo per inserire un valore per il numero di risposte da generare.
- Risposte dinamiche: attiva questa opzione per stampare le risposte man mano che vengono generate.
- Soglia del filtro di sicurezza: seleziona la soglia della probabilità di ricevere risposte potenzialmente dannose.
- Abilita il grounding: il grounding non è supportato per i prompt multimodali.
Fai clic su Inserisci file multimediali e seleziona un'origine per il file.
Carica
Seleziona il file che vuoi caricare e fai clic su Apri.
Tramite URL
Inserisci l'URL del file che vuoi utilizzare e fai clic su Inserisci.
Cloud Storage
Seleziona il bucket e poi il file del bucket che vuoi importare e fai clic su Seleziona.
Google Drive
- Scegli un account e concedi il consenso a Vertex AI Studio per accedere al tuo account la prima volta che selezioni questa opzione. Puoi caricare più file con una dimensione totale massima di 10 MB. Un singolo file non può superare i 7 MB.
- Fai clic sul file che vuoi aggiungere.
Fai clic su Seleziona.
La miniatura del file viene visualizzata nel riquadro Prompt. Viene visualizzato anche il numero totale di token. Se i dati del prompt superano il limite di token, i token vengono troncati e non sono inclusi nell'elaborazione dei dati.
Inserisci il prompt di testo nel riquadro Prompt.
(Facoltativo) Per visualizzare ID token in testo e ID token, fai clic sul conteggio token nel riquadro Prompt.
Fai clic su Invia.
(Facoltativo) Per salvare il prompt in I miei prompt, fai clic su
Salva.(Facoltativo) Per ottenere il codice Python o un comando curl per il tuo prompt, fai clic su
Genera codice.
Imposta parametri del modello facoltativi
Ogni modello ha un insieme di parametri facoltativi che puoi impostare. Per ulteriori informazioni, consulta Parametri di generazione dei contenuti.
Requisiti dei documenti
I modelli multimodali Gemini supportano i seguenti tipi MIME dei documenti:
Tipo MIME documento | Gemini 1.5 Flash | Gemini 1.5 Pro | Gemini 1.0 Pro Vision |
---|---|---|---|
PDF - application/pdf |
|||
Testo: text/plain |
I PDF vengono trattati come immagini, quindi una singola pagina di un PDF viene considerata come una singola pagina. dell'immagine. Il numero di pagine consentite in un prompt è limitato al numero di immagini che il modello può supportare:
- Gemini 1.0 Pro Vision: 16 pagine
- Gemini 1.5 Pro e Gemini 1.5 Flash: 1000 pagine
Tokenizzazione PDF
I PDF vengono trattati come immagini, pertanto ogni pagina di un PDF viene tokenizzata nello stesso modo di un'immagine.
Inoltre, il costo dei PDF segue i prezzi delle immagini di Gemini. Ad esempio, se includi un PDF di due pagine in una chiamata all'API Gemini, comporta una tariffa di input per l'elaborazione di due immagini.
Tokenizzazione testo normale
I documenti in testo normale vengono tokenizzati come testo. Ad esempio, se includi un testo normale di 100 parole documento in una chiamata API Gemini, ti viene addebitata una tariffa di input per l'elaborazione di 100 parole.
Best practice per i PDF
Quando utilizzi i PDF, segui le best practice e le informazioni riportate di seguito per ottenere risultati ottimali:
- Se il prompt contiene un singolo PDF, inseriscilo prima del prompt di testo nella richiesta.
- Se hai un documento lungo, valuta la possibilità di suddividerlo in più PDF per elaborarlo.
- Utilizza i PDF creati con testo visualizzato come testo anziché utilizzare il testo scansionate le immagini. Questo formato garantisce che il testo sia leggibile dalla macchina, in modo che sia più facile per il modello modificarlo, cercarlo e manipolarlo rispetto ai PDF di immagini acquisite. Questa prassi offre risultati ottimali quando si lavora con documenti con molto testo, come i contratti.
Limitazioni
Sebbene i modelli multimodali Gemini siano potenti in molti utilizzi multimodali, in questi casi, è importante comprendere i limiti dei modelli:
- Ragionamento spaziale: i modelli non sono precisi nel localizzare testo o oggetti nei PDF. Potrebbero restituire solo i conteggi approssimativi di di oggetti strutturati.
- Accuratezza: i modelli potrebbero avere allucinazioni durante l'interpretazione del testo scritto a mano nei documenti PDF.
Passaggi successivi
- Inizia a creare con i modelli multimodali Gemini. I nuovi clienti ricevono 300 $di crediti Google Cloud gratuiti per scoprire cosa possono fare con Gemini.
- Scopri come inviare richieste di prompt di chat.
- Scopri di più sulle best practice per l'IA responsabile e sui filtri di sicurezza di Vertex AI.