Generate text from an image

Prompt the Gemini model with an image and a text prompt, and returns the generated text.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// generateMultimodalContent generates a response into w, based upon the prompt and image.
func generateMultimodalContent(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %v", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.SetTemperature(0.4)

	// Given an image file URL, prepare image file as genai.Part
	img := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("scones.jpg")),
		FileURI:  "gs://generativeai-downloads/images/scones.jpg",
	}

	res, err := model.GenerateContent(ctx, img, genai.Text("Describe what is in this picture"))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %v", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.util.Base64;

public class MultimodalQuery {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";
    String dataImageBase64 = "your-base64-encoded-image";

    String output = multimodalQuery(projectId, location, modelName, dataImageBase64);
    System.out.println(output);
  }


  // Ask the model to recognise the brand associated with the logo image.
  public static String multimodalQuery(String projectId, String location, String modelName,
      String dataImageBase64) throws Exception {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String output;
      byte[] imageBytes = Base64.getDecoder().decode(dataImageBase64);

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "What is this image?",
              PartMaker.fromMimeTypeAndData("image/png", imageBytes)
          ));

      output = ResponseHandler.getText(response);
      return output;
    }
  }
}

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

image_file = Part.from_uri(
    "gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg"
)

# Query the model
response = model.generate_content([image_file, "what is this image?"])
print(response.text)
# Example response:
# That's a lovely overhead flatlay photograph of blueberry scones.
# The image features:
# * **Several blueberry scones:** These are the main focus,
# arranged on parchment paper with some blueberry juice stains.
# ...

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.