このページでは、Google Cloud コンソール、REST API、サポートされている SDK を使用して、Gemini モデルにチャット プロンプトを送信する方法について説明します。
リクエストに画像やその他のメディアを追加する方法については、画像認識をご覧ください。
Gemini でサポートされている言語の一覧については、言語サポートをご覧ください。
Vertex AI で使用可能な生成 AI モデルと API を探索するには、Google Cloud コンソールで Model Garden に移動します。
モバイルアプリやウェブアプリから Gemini を直接使用することをお考えの場合は、Android、Swift、ウェブ、Flutter アプリの Vertex AI in Firebase SDK をご覧ください。
チャット プロンプトのテストと反復処理には、Google Cloud コンソールを使用することをおすすめします。プログラムでプロンプトをモデルに送信するには、REST API、Vertex AI SDK for Python、または次のタブに示すサポートされている他のライブラリや SDK のいずれかを使用します。
Python
Vertex AI SDK for Python のインストールまたは更新方法については、Vertex AI SDK for Python をインストールするをご覧ください。詳細については、Vertex AI SDK for Python API リファレンス ドキュメントをご覧ください。
ストリーミング レスポンスと非ストリーミング レスポンス
モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。
ストリーミング レスポンスの場合は、generate_content
で stream
パラメータを使用します。
response = model.generate_content(contents=[...], stream = True)
非ストリーミング レスポンスの場合は、パラメータを削除するか、パラメータを False
に設定します。
サンプルコード
C#
このサンプルを試す前に、Vertex AI クイックスタートの C# の設定手順を実施してください。詳細については、Vertex AI C# のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
ストリーミング レスポンスと非ストリーミング レスポンス
モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。
ストリーミング レスポンスの場合は、StreamGenerateContent
メソッドを使用します。
public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
非ストリーミング レスポンスの場合は、GenerateContentAsync
メソッドを使用します。
public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
サーバーがレスポンスをストリーミングする方法の詳細については、ストリーミング RPC をご覧ください。
サンプルコード
Node.js
このサンプルを試す前に、Node.js SDK を使用した生成 AI クイックスタートの Node.js の設定手順を実施してください。詳細については、Node.js SDK for Gemini リファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
ストリーミング レスポンスと非ストリーミング レスポンス
モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。
ストリーミング レスポンスの場合は、generateContentStream
メソッドを使用します。
const streamingResp = await generativeModel.generateContentStream(request);
非ストリーミング レスポンスの場合は、generateContent
メソッドを使用します。
const streamingResp = await generativeModel.generateContent(request);
サンプルコード
Java
このサンプルを試す前に、Vertex AI クイックスタートの Java の設定手順を実施してください。詳細については、Vertex AI Java SDK for Gemini リファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
ストリーミング レスポンスと非ストリーミング レスポンス
モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。
ストリーミング レスポンスの場合は、generateContentStream
メソッドを使用します。
public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
非ストリーミング レスポンスの場合は、generateContent
メソッドを使用します。
public GenerateContentResponse generateContent(Content content)
サンプルコード
Go
このサンプルを試す前に、Vertex AI クイックスタートの Go の設定手順を実施してください。詳細については、Vertex AI Go SDK for Gemini リファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
ストリーミング レスポンスと非ストリーミング レスポンス
モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。
ストリーミング レスポンスの場合は、GenerateContentStream
メソッドを使用します。
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
非ストリーミング レスポンスの場合は、GenerateContent
メソッドを使用します。
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
サンプルコード
REST
環境をセットアップしたら、REST を使用してテキスト プロンプトをテストできます。次のサンプルは、パブリッシャー モデルのエンドポイントにリクエストを送信します。
リクエストのデータを使用する前に、次のように置き換えます。
GENERATE_RESPONSE_METHOD
: モデルに生成させるレスポンスのタイプ。モデルのレスポンスを返す方法を生成するメソッドを選択します。streamGenerateContent
: レスポンスは生成時にストリーミングされます。ユーザーが遅延を感じることは少なくなります。generateContent
: レスポンスは、完全に生成された後に返されます。
LOCATION
: リクエストを処理するリージョン。使用できる選択肢は以下のとおりです。クリックして、利用可能なリージョンの一部を開く
us-central1
us-west4
northamerica-northeast1
us-east4
us-west1
asia-northeast3
asia-southeast1
asia-northeast1
PROJECT_ID
: 実際のプロジェクト ID。MODEL_ID
: 使用するマルチモーダル モデルのモデル ID。選択できるオプションには次のものがあります。gemini-1.0-pro-002
gemini-1.0-pro-vision-001
gemini-1.5-pro-002
gemini-1.5-flash
マルチターンの会話の最初のプロンプトに含める指示のテキスト。例:TEXT1
What are all the colors in a rainbow?
プロンプトに含める指示のテキスト。例:TEXT2
Why does it appear when it rains?
TEMPERATURE
: 温度は、topP
とtopK
が適用された場合に発生するレスポンス生成時のサンプリングに使用されます。温度は、トークン選択のランダム性の度合いを制御します。温度が低いほど、確定的で自由度や創造性を抑えたレスポンスが求められるプロンプトに適しています。一方、温度が高いと、より多様で創造的な結果を導くことができます。温度が0
の場合、確率が最も高いトークンが常に選択されます。この場合、特定のプロンプトに対するレスポンスはほとんど確定的ですが、わずかに変動する可能性は残ります。モデルが返すレスポンスが一般的すぎる、短すぎる、あるいはフォールバック(代替)レスポンスが返ってくる場合は、温度を高く設定してみてください。
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
cat > request.json << 'EOF' { "contents": [ { "role": "user", "parts": { "text": "TEXT1" } }, { "role": "model", "parts": { "text": "What a great question!" } }, { "role": "user", "parts": { "text": "TEXT2" } } ], "generation_config": { "temperature": TEMPERATURE } } EOF
その後、次のコマンドを実行して REST リクエストを送信します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。
@' { "contents": [ { "role": "user", "parts": { "text": "TEXT1" } }, { "role": "model", "parts": { "text": "What a great question!" } }, { "role": "user", "parts": { "text": "TEXT2" } } ], "generation_config": { "temperature": TEMPERATURE } } '@ | Out-File -FilePath request.json -Encoding utf8
その後、次のコマンドを実行して REST リクエストを送信します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
このサンプルの URL にある次の点に注意してください。generateContent
メソッドを使用して、レスポンスが完全に生成された後に返されるようにリクエストします。ユーザーが認識するレイテンシを短縮するには、streamGenerateContent
メソッドを使用して、生成時にレスポンスをストリーミングします。- マルチモーダル モデル ID は、URL の末尾のメソッドの前に配置されます(例:
gemini-1.5-flash
、gemini-1.0-pro-vision
)。このサンプルでは、他のモデルもサポートされている場合があります。
コンソール
Vertex AI Studio を使用して Google Cloud コンソールのチャット プロンプトを送信するには、次の操作を行います。
- Google Cloud コンソールの [Vertex AI] セクションで、[Vertex AI Studio] ページに移動します。
- [会話を開始] で [テキスト チャット] をクリックします。
省略可: モデルとパラメータを構成します。
- モデル: [Gemini Pro] を選択します。
- リージョン: 使用するリージョンを選択します。
温度: スライダーまたはテキスト ボックスを使用して、温度の値を入力します。
温度は、レスポンス生成時のサンプリングに使用されます。レスポンス生成は、topP
とtopK
が適用された場合に発生します。温度は、トークン選択のランダム性の度合いを制御します。温度が低いほど、確定的で自由度や創造性を抑えたレスポンスが求められるプロンプトに適しています。一方、温度が高いと、より多様で創造的な結果を導くことができます。温度が0
の場合、確率が最も高いトークンが常に選択されます。この場合、特定のプロンプトに対するレスポンスはほとんど確定的ですが、わずかに変動する可能性は残ります。モデルが返すレスポンスが一般的すぎる、短すぎる、あるいはフォールバック(代替)レスポンスが返ってくる場合は、温度を高く設定してみてください。
出力トークンの上限: スライダーまたはテキスト ボックスを使用して、最大出力の上限値を入力します。
レスポンスで生成できるトークンの最大数。1 トークンは約 4 文字です。100 トークンは約 60~80 語に相当します。レスポンスを短くしたい場合は小さい値を、長くしたい場合は大きい値を指定します。
- 停止シーケンスを追加: 省略可。停止シーケンスを入力します。これはスペースを含む文字列です。モデルが停止シーケンスに遭遇すると、レスポンスの生成が停止します。停止シーケンスはレスポンスには含まれません。停止シーケンスは 5 つまで追加できます。
- 省略可: 詳細パラメータを構成するには、[詳細] をクリックして、次のように構成します。
クリックして詳細構成を開く
トップ K: スライダーまたはテキスト ボックスを使用して、トップ K の値を入力します。
トップ K は、モデルが出力用にトークンを選択する方法を変更します。Top-K が1
の場合、次に選択されるトークンは、モデルの語彙内のすべてのトークンで最も確率の高いものであることになります(グリーディ デコードとも呼ばれます)。Top-K が3
の場合は、最も確率が高い上位 3 つのトークンから次のトークン選択されることになります(温度を使用します)。トークン選択のそれぞれのステップで、最も高い確率を持つ Top-K のトークンがサンプリングされます。その後、トークンは Top-P に基づいてさらにフィルタリングされ、最終的なトークンは温度サンプリングを用いて選択されます。
ランダムなレスポンスを減らしたい場合は小さい値を、ランダムなレスポンスを増やしたい場合は大きい値を指定します。
- トップ P: スライダーまたはテキスト ボックスを使用して、トップ P の値を入力します。確率の合計がトップ P の値と等しくなるまで、最も確率が高いものから最も確率が低いものの順に、トークンが選択されます。結果を最小にするには、トップ P を
0
に設定します。 - 根拠づけを有効にする: グラウンディング ソースとパスを追加して、この機能をカスタマイズします。
- [プロンプト] ペインにテキスト プロンプトを入力します。モデルは、以前のメッセージを新しいレスポンスのコンテキストとして使用します。
- 省略可: テキスト トークン数を表示するには、[トークンを表示] をクリックします。テキスト プロンプトのトークンまたはトークン ID を表示できます。
- テキスト プロンプト内のトークン(各トークン ID の境界が異なる色でハイライト表示されている)を表示するには、[Token ID to text] をクリックします。メディア トークンはサポートされていません。
- トークン ID を表示するには、[トークン ID] をクリックします。
トークン生成ツールペインを閉じるには、[X] をクリックするか、ペインの外側をクリックします。
- [送信] をクリックします。
- 省略可: プロンプトを [マイプロンプト] に保存するには、[ 保存] をクリックします。
- 省略可: プロンプトの Python コードまたは curl コマンドを取得するには、[ コードを取得] をクリックします。
- 省略可: 以前のメッセージをすべて消去するには、[ CLEAR CONVERSATION] をクリックします。
システム指示を使用すると、特定のニーズやユースケースに基づいてモデルの動作を制御できます。たとえば、カスタマー サービス リクエストに応答する chatbot のペルソナまたはロールを定義できます。詳細については、システム指示のコードサンプルをご覧ください。
次のステップ
マルチモーダル プロンプト リクエストの送信方法を学習する。