不過,隨著生成式 AI 解決方案日趨成熟,您可能需要一個平台,以便建構及部署端對端生成式 AI 應用程式和解決方案。Google Cloud 提供全方位的工具生態系統,協助開發人員充分運用生成式 AI 的強大功能,從應用程式開發的初始階段,到應用程式部署、應用程式代管,以及大規模管理複雜資料,都能得心應手。
Google Cloud 的 Vertex AI 平台提供全套機器學習運作工具,可簡化 AI 模型的運用、部署和監控程序,提升效率和可靠性。此外,與資料庫、DevOps 工具、記錄、監控和 IAM 的整合,可提供全面性的方法,管理整個生成式 AI 生命週期。
# To install the Python SDK, use this CLI command:# pip install google-generativeaiimportgoogle.generativeaiasgenaifromgoogle.generativeaiimportGenerativeModelAPI_KEY="API_KEY"genai.configure(api_key=API_KEY)
# To install the Python SDK, use this CLI command:# pip install google-genaifromgoogleimportgenaiPROJECT_ID="PROJECT_ID"LOCATION="LOCATION"# e.g. us-central1client=genai.Client(project=PROJECT_ID,location=LOCATION,vertexai=True)
根據文字提示生成文字的程式碼範例
Gemini Developer API
Vertex AI 的 Gemini API
model=GenerativeModel("gemini-2.0-flash")response=model.generate_content("The opposite of hot is")print(response.text)# The opposite of hot is cold.
fromgoogleimportgenaifromgoogle.genai.typesimportHttpOptionsclient=genai.Client(http_options=HttpOptions(api_version="v1"))response=client.models.generate_content(model="gemini-2.5-flash",contents="How does AI work?",)print(response.text)# Example response:# Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...## Here's a simplified overview:# ...
使用文字和圖片生成文字的程式碼範例
Gemini Developer API
Vertex AI 的 Gemini API
importPIL.Imagemultimodal_model=GenerativeModel("gemini-2.0-flash")image=PIL.Image.open("image.jpg")response=multimodal_model.generate_content(["What is this picture?",image])print(response.text)# A cat is shown in this picture.
fromgoogleimportgenaifromgoogle.genai.typesimportHttpOptions,Partclient=genai.Client(http_options=HttpOptions(api_version="v1"))response=client.models.generate_content(model="gemini-2.5-flash",contents=["What is shown in this image?",Part.from_uri(file_uri="gs://cloud-samples-data/generative-ai/image/scones.jpg",mime_type="image/jpeg",),],)print(response.text)# Example response:# The image shows a flat lay of blueberry scones arranged on parchment paper. There are ...
產生多輪對話的程式碼範例
Gemini Developer API
Vertex AI 的 Gemini API
model=GenerativeModel("gemini-2.0-flash")chat=model.start_chat()print(chat.send_message("How are you?").text)print(chat.send_message("What can you do?").text)
fromgoogleimportgenaifromgoogle.genai.typesimportHttpOptions,ModelContent,Part,UserContentclient=genai.Client(http_options=HttpOptions(api_version="v1"))chat_session=client.chats.create(model="gemini-2.5-flash",history=[UserContent(parts=[Part(text="Hello")]),ModelContent(parts=[Part(text="Great to meet you. What would you like to know?")],),],)response=chat_session.send_message("Tell me a story.")print(response.text)# Example response:# Okay, here's a story for you:# ...
將提示遷移至 Vertex AI Studio
Google AI Studio 提示資料會儲存在 Google 雲端硬碟資料夾中。本節說明如何將提示遷移至 Vertex AI Studio。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-09-04 (世界標準時間)。"],[],[],null,["As your [Gemini API](https://ai.google.dev/gemini-api/docs)\napplications mature, you might find that you need a more expansive platform for\nbuilding and deploying generative AI applications and solutions end-to-end.\nVertex AI provides a comprehensive ecosystem of tools to enable\ndevelopers to harness the power of generative AI, from the initial stages of app\ndevelopment to app deployment, app hosting, and managing complex data at scale.\n\nWith Vertex AI, you get access to a suite of Machine Learning\nOperations (MLOps) tools to streamline usage, deployment, and monitoring of AI\nmodels for efficiency and reliability. Additionally, integrations with\ndatabases, Development Operations (DevOps) tools, logging, monitoring, and\nIAM offer a comprehensive approach to managing the entire\ngenerative AI lifecycle.\n\nDifferences between using the Gemini API on its own and Vertex AI\n\nThe following table summarizes the main differences between the\nGemini API and Vertex AI to help you decide which option is\nright for your use case:\n\n| **Feature** | **Gemini API** | **Vertex AI** |\n| Endpoint names | `generativelanguage.googleapis.com` | `aiplatform.googleapis.com` |\n| Sign up | Google Account | Google Cloud account (with terms agreement and billing) |\n| Authentication | API key | Google Cloud service account |\n| User interface playground | Google AI Studio | Vertex AI Studio |\n|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| API \\& SDK | Server and mobile/web client SDKs - Server: Python, Node.js, Go, Dart, ABAP - Mobile/Web client: Android (Kotlin/Java), Swift, Web, Flutter | Server and mobile/web client SDKs - Server: Python, Node.js, Go, Java, ABAP - Mobile/Web client (via [Vertex AI in Firebase](https://firebase.google.com/docs/vertex-ai)): Android (Kotlin/Java), Swift, Web, Flutter |\n| No-cost usage of API \\& SDK | Yes, [where applicable](https://ai.google.dev/gemini-api/docs/billing#is-Gemini-free-in-EEA-UK-CH) | $300 Google Cloud credit for new users |\n| Quota (requests per minute) | Varies based on model and pricing plan (see [detailed information](https://ai.google.dev/pricing)) | Varies based on model and region (see [detailed information](/vertex-ai/generative-ai/docs/quotas)) |\n| Enterprise support | No | - Customer encryption key - Virtual private cloud - Data residency - Access transparency - Scalable infrastructure for application hosting - Databases and data storage |\n| MLOps | No | Full MLOps on Vertex AI (examples: model evaluation, Model Monitoring, Model Registry) |\n\nMigration steps\n\nThe following sections cover the steps required to migrate your Gemini\nAPI code to Vertex AI. These steps assume you have prompt data from\nGoogle AI Studio saved in Google Drive.\n\nWhen migrating to Vertex AI:\n\n- You can use your existing Google Cloud project (the same one you used to generate your Gemini API key) or you can create a new [Google Cloud project](/resource-manager/docs/creating-managing-projects).\n- Supported regions might differ between the Gemini API and Vertex AI. See the list of [supported regions for generative\n AI on Google Cloud](/vertex-ai/generative-ai/docs/learn/locations).\n- Any models you created in Google AI Studio need to be retrained in Vertex AI.\n\n1. Migrate your prompts to Vertex AI Studio\n\nYour Google AI Studio prompt data is saved in a Google Drive folder. This\nsection shows how to migrate your prompts to Vertex AI Studio.\n\n1. Open [Google Drive](https://drive.google.com).\n2. Navigate to the **AI_Studio** folder where the prompts are stored.\n3. Download your prompts from Google Drive to a local directory.\n\n | **Note:** Prompts downloaded from Google Drive are in the text (`txt`) format. Before you upload them to Vertex AI Studio, change the file extensions from `.txt` to `.json` to convert them to JSON files.\n4. Open [Vertex AI Studio](https://console.cloud.google.com/vertex-ai/generative) in the Google Cloud console.\n\n5. In the **Vertex AI** menu, click **Recents \\\u003e View all** to open the\n **Prompt management** menu.\n\n6. Click download**Import prompt**.\n\n7. Next to the **Prompt file** field, click **Browse** and select a prompt\n from your local directory.\n\n To upload prompts in bulk, you must manually combine your prompts into a\n single JSON file.\n8. Click **Upload**.\n\n2. Upload training data to Vertex AI Studio\n\nTo migrate your training data to Vertex AI, you need to upload your\ndata to a Cloud Storage bucket. For more information, see\n[Introduction to tuning](/vertex-ai/generative-ai/docs/models/tune-models).\n\n3. Delete unused API Keys\n\nIf you no longer need to use your Gemini API key for the\nGemini Developer API, then follow security best practices and delete\nit.\n\nTo delete an API key:\n\n1. Open the [Google Cloud API Credentials](https://console.cloud.google.com/apis/credentials)\n page.\n\n2. Find the API key that you want to delete and click the **Actions** icon.\n\n3. Select **Delete API key**.\n\n4. In the **Delete credential** modal, select **Delete**.\n\n Deleting an API key takes a few minutes to propagate. After propagation\n completes, any traffic using the deleted API key is rejected.\n\n| **Important:** If you delete a key that's still used in production and need to recover it, see [`gcloud beta services api-keys\n| undelete`](/sdk/gcloud/reference/beta/services/api-keys/undelete).\n\nWhat's next\n\n- Try a quickstart tutorial using [Vertex AI Studio](/vertex-ai/generative-ai/docs/start/quickstarts/quickstart) or the [Vertex AI API](/vertex-ai/generative-ai/docs/start/quickstarts/quickstart-multimodal)."]]