Ottieni incorporamenti di testo

Questo documento descrive come creare un incorporamento di testo utilizzando Vertex AI API Text Embeddings.

L'API di incorporamento del testo di Vertex AI utilizza rappresentazioni vettoriali dense: ad esempio, text-embedding-gecko utilizza vettori di 768 dimensioni. I modelli di embedding di vettori densi utilizzano metodi di deep learning simili a quelli utilizzati dai modelli linguistici di grandi dimensioni. A differenza dei vettori sparsi, che tendono a mappare direttamente le parole in numeri, i vettori densi sono progettati per rappresentare meglio il significato di un testo. Il vantaggio dell'utilizzo di embedding vettoriali densi nell'IA generativa è che, anziché cercare corrispondenze dirette di parole o sintassi, puoi cercare meglio i passaggi in linea con il significato della query, anche se i passaggi non utilizzano la stessa lingua.

Prima di iniziare

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Enable the Vertex AI API.

    Enable the API

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Enable the Vertex AI API.

    Enable the API

  6. Scegli un tipo di attività per il tuo job di incorporamento.

Modelli supportati

Puoi ottenere gli incorporamenti di testo utilizzando i seguenti modelli:

Modelli inglesi Modelli multilingue
textembedding-gecko@001 textembedding-gecko-multilingual@001
textembedding-gecko@003 text-multilingual-embedding-002
text-embedding-004
text-embedding-preview-0815

Se non hai mai utilizzato questi modelli, ti consigliamo di usare le versioni più recenti. Per il testo in inglese, utilizza text-embedding-004. Per il testo multilingue, utilizza text-multilingual-embedding-002.

Ottenere gli incorporamenti di testo per uno snippet di testo

Puoi ottenere gli incorporamenti di testo per uno snippet di testo utilizzando l'API Vertex AI oppure l'SDK Vertex AI per Python. Per ogni richiesta, hai un limite di 250 testi di input in us-central1, mentre nelle altre regioni il testo di input massimo è 5. L'API ha un limite massimo di token di input pari a 20.000. Gli input che superano questo limite provocano un errore 500. Ogni singolo testo di input è ulteriormente limitato a 2048 token; tutti quelli in eccesso vengono troncati automaticamente. Puoi anche disattivare la modalità silenziosa troncato impostando autoTruncate su false.

Per impostazione predefinita, tutti i modelli producono un output con dimensioni 768. Tuttavia, i seguenti modelli consentono agli utenti di scegliere una dimensione di output compresa tra 1 e 768. Selezionando una dimensionalità di output più piccola, gli utenti possono risparmiare memoria e spazio di archiviazione lo spazio di archiviazione a disposizione, per eseguire calcoli più efficienti.

  • text-embedding-004
  • text-multilingual-embedding-002
  • text-embedding-preview-0815

Gli esempi riportati di seguito utilizzano il modello text-embedding-004.

REST

Per ottenere gli incorporamenti di testo, invia una richiesta POST specificando l'ID modello del modello di publisher.

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • PROJECT_ID: il tuo ID progetto.
  • TEXT: il testo che deve generare gli incorporamenti. . Limite: cinque testi con un massimo di 2048 token per testo per tutti i modelli tranne textembedding-gecko@001. La lunghezza massima del token di input per textembedding-gecko@001 è 3072.
  • AUTO_TRUNCATE: se impostato su false, il testo che supera il limite di token causa il fallimento della richiesta. Il valore predefinito è true.

Metodo HTTP e URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict

Corpo JSON della richiesta:

{
  "instances": [
    { "content": "TEXT"}
  ],
  "parameters": { 
    "autoTruncate": AUTO_TRUNCATE 
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente. Tieni presente che values è stato troncato per risparmiare spazio.

Comando curl di esempio

MODEL_ID="text-embedding-004"
PROJECT_ID=PROJECT_ID

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
$'{
  "instances": [
    { "content": "What is life?"}
  ],
}'

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta documentazione di riferimento dell'API Python.

from __future__ import annotations

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel


def embed_text() -> list[list[float]]:
    """Embeds texts with a pre-trained, foundational model.

    Returns:
        A list of lists containing the embedding vectors for each input text
    """

    # A list of texts to be embedded.
    texts = ["banana muffins? ", "banana bread? banana muffins?"]
    # The dimensionality of the output embeddings.
    dimensionality = 256
    # The task type for embedding. Check the available tasks in the model's documentation.
    task = "RETRIEVAL_DOCUMENT"

    model = TextEmbeddingModel.from_pretrained("text-embedding-004")
    inputs = [TextEmbeddingInput(text, task) for text in texts]
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}
    embeddings = model.get_embeddings(inputs, **kwargs)

    print(embeddings)
    # Example response:
    # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...], [0.1234434666, ...]],
    return [embedding.values for embedding in embeddings]

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Go di Vertex AI.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// embedTexts shows how embeddings are set for text-embedding-preview-0409 model
func embedTexts(w io.Writer, project, location string) error {
	// location := "us-central1"
	ctx := context.Background()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	dimensionality := 5
	model := "text-embedding-004"
	texts := []string{"banana muffins? ", "banana bread? banana muffins?"}

	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return err
	}
	defer client.Close()

	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)
	instances := make([]*structpb.Value, len(texts))
	for i, text := range texts {
		instances[i] = structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"content":   structpb.NewStringValue(text),
				"task_type": structpb.NewStringValue("QUESTION_ANSWERING"),
			},
		})
	}

	params := structpb.NewStructValue(&structpb.Struct{
		Fields: map[string]*structpb.Value{
			"outputDimensionality": structpb.NewNumberValue(float64(dimensionality)),
		},
	})

	req := &aiplatformpb.PredictRequest{
		Endpoint:   endpoint,
		Instances:  instances,
		Parameters: params,
	}
	resp, err := client.Predict(ctx, req)
	if err != nil {
		return err
	}
	embeddings := make([][]float32, len(resp.Predictions))
	for i, prediction := range resp.Predictions {
		values := prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values
		embeddings[i] = make([]float32, len(values))
		for j, value := range values {
			embeddings[i][j] = float32(value.GetNumberValue())
		}
	}

	fmt.Fprintf(w, "Dimensionality: %d. Embeddings length: %d", len(embeddings[0]), len(embeddings))
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

import static java.util.stream.Collectors.toList;

import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictRequest;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.OptionalInt;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class PredictTextEmbeddingsSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    String project = "YOUR_PROJECT_ID";
    String model = "text-embedding-004";
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of("banana bread?", "banana muffins?"),
        "QUESTION_ANSWERING",
        OptionalInt.of(256));
  }

  // Gets text embeddings from a pretrained, foundational model.
  public static List<List<Float>> predictTextEmbeddings(
      String endpoint,
      String project,
      String model,
      List<String> texts,
      String task,
      OptionalInt outputDimensionality)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();
    Matcher matcher = Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
    String location = matcher.matches() ? matcher.group("Location") : "us-central1";
    EndpointName endpointName =
        EndpointName.ofProjectLocationPublisherModelName(project, location, "google", model);

    // You can use this prediction service client for multiple requests.
    try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
      PredictRequest.Builder request =
          PredictRequest.newBuilder().setEndpoint(endpointName.toString());
      if (outputDimensionality.isPresent()) {
        request.setParameters(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("outputDimensionality", valueOf(outputDimensionality.getAsInt()))
                        .build()));
      }
      for (int i = 0; i < texts.size(); i++) {
        request.addInstances(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("content", valueOf(texts.get(i)))
                        .putFields("task_type", valueOf(task))
                        .build()));
      }
      PredictResponse response = client.predict(request.build());
      List<List<Float>> floats = new ArrayList<>();
      for (Value prediction : response.getPredictionsList()) {
        Value embeddings = prediction.getStructValue().getFieldsOrThrow("embeddings");
        Value values = embeddings.getStructValue().getFieldsOrThrow("values");
        floats.add(
            values.getListValue().getValuesList().stream()
                .map(Value::getNumberValue)
                .map(Double::floatValue)
                .collect(toList()));
      }
      return floats;
    }
  }

  private static Value valueOf(String s) {
    return Value.newBuilder().setStringValue(s).build();
  }

  private static Value valueOf(int n) {
    return Value.newBuilder().setNumberValue(n).build();
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

async function main(
  project,
  model = 'text-embedding-004',
  texts = 'banana bread?;banana muffins?',
  task = 'QUESTION_ANSWERING',
  dimensionality = 0,
  apiEndpoint = 'us-central1-aiplatform.googleapis.com'
) {
  const aiplatform = require('@google-cloud/aiplatform');
  const {PredictionServiceClient} = aiplatform.v1;
  const {helpers} = aiplatform; // helps construct protobuf.Value objects.
  const clientOptions = {apiEndpoint: apiEndpoint};
  const location = 'us-central1';
  const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;

  async function callPredict() {
    const instances = texts
      .split(';')
      .map(e => helpers.toValue({content: e, task_type: task}));
    const parameters = helpers.toValue(
      dimensionality > 0 ? {outputDimensionality: parseInt(dimensionality)} : {}
    );
    const request = {endpoint, instances, parameters};
    const client = new PredictionServiceClient(clientOptions);
    const [response] = await client.predict(request);
    const predictions = response.predictions;
    const embeddings = predictions.map(p => {
      const embeddingsProto = p.structValue.fields.embeddings;
      const valuesProto = embeddingsProto.structValue.fields.values;
      return valuesProto.listValue.values.map(v => v.numberValue);
    });
    console.log('Got embeddings: \n' + JSON.stringify(embeddings));
  }

  callPredict();
}

Modello più recente

È disponibile un modello di embedding in anteprima:

  • text-embedding-preview-0815

Questo modello supporta un nuovo tipo di attività CODE_RETRIEVAL_QUERY, che può essere utilizzato per recuperare blocchi di codice pertinenti utilizzando query di testo normale. Per utilizzare questa funzionalità, i blocchi di codice devono essere incorporati utilizzando il tipo di attività RETRIEVAL_DOCUMENT, mentre le query di testo incorporate utilizzando CODE_RETRIEVAL_QUERY.

Per esplorare tutti i tipi di attività, consulta il riferimento del modello.

Ecco un esempio:

REST

PROJECT_ID=PROJECT_ID

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-preview-0815:predict -d \
$'{
  "instances": [
    {
      "task_type": "CODE_RETRIEVAL_QUERY",
      "content": "Function to add two numbers"
    }
  ],
}'

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta documentazione di riferimento dell'API Python.

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel

MODEL_NAME = "text-embedding-preview-0815"
DIMENSIONALITY = 256


def embed_text(
    texts: list[str] = ["Retrieve a function that adds two numbers"],
    task: str = "CODE_RETRIEVAL_QUERY",
    model_name: str = "text-embedding-preview-0815",
    dimensionality: int | None = 256,
) -> list[list[float]]:
    """Embeds texts with a pre-trained, foundational model."""
    model = TextEmbeddingModel.from_pretrained(model_name)
    inputs = [TextEmbeddingInput(text, task) for text in texts]
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}
    embeddings = model.get_embeddings(inputs, **kwargs)
    # Example response:
    # [[0.025890009477734566, -0.05553026497364044, 0.006374752148985863,...],
    return [embedding.values for embedding in embeddings]


if __name__ == "__main__":
    # Embeds code block with a pre-trained, foundational model.
    # Using this function to calculate the embedding for corpus.
    texts = ["Retrieve a function that adds two numbers"]
    task = "CODE_RETRIEVAL_QUERY"
    code_block_embeddings = embed_text(
        texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY
    )

    # Embeds code retrieval with a pre-trained, foundational model.
    # Using this function to calculate the embedding for query.
    texts = [
        "def func(a, b): return a + b",
        "def func(a, b): return a - b",
        "def func(a, b): return (a ** 2 + b ** 2) ** 0.5",
    ]
    task = "RETRIEVAL_DOCUMENT"
    code_query_embeddings = embed_text(
        texts=texts, task=task, model_name=MODEL_NAME, dimensionality=DIMENSIONALITY
    )

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Go di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// Embeds code query with a pre-trained, foundational model by specifying the task type as 'CODE_RETRIEVAL_QUERY'. e.g. 'Retrieve a function that adds two numbers'.
// Embeds code block with a pre-trained, foundational model by specifying the task type as 'RETRIEVAL_DOCUMENT'. e.g. 'texts := []string{"def func(a, b): return a + b", "def func(a, b): return a - b", "def func(a, b): return (a ** 2 + b ** 2) ** 0.5"}'.
// embedTextsPreview shows how embeddings are set for text-embedding-preview-0815 model
func embedTextsPreview(w io.Writer, projectID, location string) error {
	// location := "us-central1"
	ctx := context.Background()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	dimensionality := 5
	model := "text-embedding-preview-0815"
	texts := []string{"banana muffins? ", "banana bread? banana muffins?"}

	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return err
	}
	defer client.Close()

	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", projectID, location, model)
	instances := make([]*structpb.Value, len(texts))
	for i, text := range texts {
		instances[i] = structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"content":   structpb.NewStringValue(text),
				"task_type": structpb.NewStringValue("CODE_RETRIEVAL_QUERY"),
			},
		})
	}

	params := structpb.NewStructValue(&structpb.Struct{
		Fields: map[string]*structpb.Value{
			"outputDimensionality": structpb.NewNumberValue(float64(dimensionality)),
		},
	})

	req := &aiplatformpb.PredictRequest{
		Endpoint:   endpoint,
		Instances:  instances,
		Parameters: params,
	}
	resp, err := client.Predict(ctx, req)
	if err != nil {
		return err
	}
	embeddings := make([][]float32, len(resp.Predictions))
	for i, prediction := range resp.Predictions {
		values := prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values
		embeddings[i] = make([]float32, len(values))
		for j, value := range values {
			embeddings[i][j] = float32(value.GetNumberValue())
		}
	}

	fmt.Fprintf(w, "Dimensionality: %d. Embeddings length: %d", len(embeddings[0]), len(embeddings))
	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

import static java.util.stream.Collectors.toList;

import com.google.cloud.aiplatform.v1beta1.EndpointName;
import com.google.cloud.aiplatform.v1beta1.PredictRequest;
import com.google.cloud.aiplatform.v1beta1.PredictResponse;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceSettings;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.OptionalInt;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class PredictTextEmbeddingsSamplePreview {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are
    // available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String endpoint = "us-central1-aiplatform.googleapis.com";
    String project = "YOUR_PROJECT_ID";
    String model = "text-embedding-preview-0815";
    // Calculate the embedding for a code retrieval query. Using 'CODE_RETRIEVAL_QUERY' for query.
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of("Retrieve a function that adds two numbers"),
        "CODE_RETRIEVAL_QUERY",
        OptionalInt.of(256));

    // Calculate the embedding for code blocks. Using 'RETRIEVAL_DOCUMENT' for corpus.
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of(
            "def func(a, b): return a + b",
            "def func(a, b): return a - b",
            "def func(a, b): return (a ** 2 + b ** 2) ** 0.5"),
        "RETRIEVAL_DOCUMENT",
        OptionalInt.of(256));
  }

  // Gets text embeddings from a pretrained, foundational model.
  public static List<List<Float>> predictTextEmbeddings(
      String endpoint,
      String project,
      String model,
      List<String> texts,
      String task,
      OptionalInt outputDimensionality)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();
    Matcher matcher = Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
    String location = matcher.matches() ? matcher.group("Location") : "us-central1";
    EndpointName endpointName =
        EndpointName.ofProjectLocationPublisherModelName(project, location, "google", model);

    // You can use this prediction service client for multiple requests.
    try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
      PredictRequest.Builder request =
          PredictRequest.newBuilder().setEndpoint(endpointName.toString());
      if (outputDimensionality.isPresent()) {
        request.setParameters(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("outputDimensionality", valueOf(outputDimensionality.getAsInt()))
                        .build()));
      }
      for (int i = 0; i < texts.size(); i++) {
        request.addInstances(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("content", valueOf(texts.get(i)))
                        .putFields("task_type", valueOf(task))
                        .build()));
      }
      PredictResponse response = client.predict(request.build());
      List<List<Float>> floats = new ArrayList<>();
      for (Value prediction : response.getPredictionsList()) {
        Value embeddings = prediction.getStructValue().getFieldsOrThrow("embeddings");
        Value values = embeddings.getStructValue().getFieldsOrThrow("values");
        floats.add(
            values.getListValue().getValuesList().stream()
                .map(Value::getNumberValue)
                .map(Double::floatValue)
                .collect(toList()));
      }
      return floats;
    }
  }

  private static Value valueOf(String s) {
    return Value.newBuilder().setStringValue(s).build();
  }

  private static Value valueOf(int n) {
    return Value.newBuilder().setNumberValue(n).build();
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Node.js Vertex AI documentazione di riferimento.

Per autenticarti in Vertex AI, configura le credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


// TODO(developer): Update the following for your own use case.
const project = 'long-door-651';
const model = 'text-embedding-preview-0815';
const location = 'us-central1';
// Calculate the embedding for code blocks. Using 'RETRIEVAL_DOCUMENT' for corpus.
// Specify the task type as 'CODE_RETRIEVAL_QUERY' for query, e.g. 'Retrieve a function that adds two numbers'.
const texts =
  'def func(a, b): return a + b;def func(a, b): return a - b;def func(a, b): return (a ** 2 + b ** 2) ** 0.5';
const task = 'RETRIEVAL_DOCUMENT';
const dimensionality = 3;
const apiEndpoint = 'us-central1-aiplatform.googleapis.com';

const aiplatform = require('@google-cloud/aiplatform');
const {PredictionServiceClient} = aiplatform.v1;
const {helpers} = aiplatform; // helps construct protobuf.Value objects.
const clientOptions = {apiEndpoint: apiEndpoint};
const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;
const parameters = helpers.toValue({
  outputDimensionality: parseInt(dimensionality),
});

async function callPredict() {
  const instances = texts
    .split(';')
    .map(e => helpers.toValue({content: e, task_type: task}));
  const request = {endpoint, instances, parameters};
  const client = new PredictionServiceClient(clientOptions);
  const [response] = await client.predict(request);
  const predictions = response.predictions;
  const embeddings = predictions.map(p => {
    const embeddingsProto = p.structValue.fields.embeddings;
    const valuesProto = embeddingsProto.structValue.fields.values;
    return valuesProto.listValue.values.map(v => v.numberValue);
  });
  console.log('Got embeddings: \n' + JSON.stringify(embeddings));
}
await callPredict();

Quando utilizzi questi modelli, si applicano le seguenti limitazioni:

  • Non utilizzare questi modelli di anteprima su sistemi mission critical o di produzione.
  • Questi modelli sono disponibili solo in us-central1.
  • Le previsioni in batch non sono supportate.
  • La personalizzazione non è supportata.

Aggiungi un incorporamento a un database vettoriale

Dopo aver generato l'embedding, puoi aggiungerlo a un database di vettori, come Vector Search. Ciò consente il recupero a bassa latenza, ed è fondamentale con l'aumento delle dimensioni dei dati.

Per scoprire di più sulla ricerca vettoriale, consulta la Panoramica della ricerca vettoriale.

Passaggi successivi