Vertex AI の Vertex AI Studio を使用すると、Google Cloud コンソール、Vertex AI API、または Vertex AI SDK for Python でプロンプトをテストできます。このページでは、これらのインターフェースを使用してチャット プロンプトをテストする方法について説明します。
チャット プロンプトの設計方法については、チャット プロンプトをご覧ください。
チャット プロンプトをテストする
チャット プロンプトをテストするには、次のいずれかの方法を選択します。
REST
Vertex AI API を使用してテキスト プロンプトをテストするには、パブリッシャー モデル エンドポイントに POST リクエストを送信します。
リクエストのデータを使用する前に、次のように置き換えます。
- PROJECT_ID: 実際のプロジェクト ID。
- CONTEXT: 省略可。コンテキストとは、モデルがどのように応答すべきかについてモデルに与える指示や、モデルが応答を生成するために使用または参照する情報などです。モデルに情報を与える必要がある場合、または回答の範囲をコンテキスト内の要素だけに制限する必要がある場合は、コンテキスト情報をプロンプトに追加します。
- 例(省略可): 会話に応答する方法を学ぶための、モデルに対する構造化メッセージのリスト。
- EXAMPLE_INPUT: メッセージの例。
- EXAMPLE_OUTPUT: 理想的なレスポンスの例。
- メッセージ: 構造化された形式でモデルに提供される会話の履歴。メッセージは古い順、新しい順に表示されます。メッセージの履歴のために入力が最大文字数を超えると、プロンプト全体が上限内に収まるまで最も古いメッセーが削除されます。モデルがレスポンスを生成するためには、メッセージの数(AUTHOR-CONTENT ペア)が奇数である必要があります。
- AUTHOR: メッセージの作成者。
- CONTENT: メッセージの内容。
- TEMPERATURE: 温度は、
topP
とtopK
が適用された場合に発生するレスポンス生成時のサンプリングに使用されます。温度は、トークン選択のランダム性の度合いを制御します。温度が低いほど、確定的で自由度や創造性を抑えたレスポンスが求められるプロンプトに適しています。一方、温度が高いと、より多様で創造的な結果を導くことができます。温度が0
の場合、確率が最も高いトークンが常に選択されます。この場合、特定のプロンプトに対するレスポンスはほとんど確定的ですが、わずかに変動する可能性は残ります。モデルが返すレスポンスが一般的すぎる、短すぎる、あるいはフォールバック(代替)レスポンスが返ってくる場合は、温度を高く設定してみてください。
- MAX_OUTPUT_TOKENS: レスポンスで生成できるトークンの最大数。1 トークンは約 4 文字です。100 トークンは約 60~80 語に相当します。
レスポンスを短くしたい場合は小さい値を、長くしたい場合は大きい値を指定します。
- TOP_P: Top-P は、モデルが出力用にトークンを選択する方法を変更します。トークンは、確率の合計が Top-P 値に等しくなるまで、確率の高いもの(Top-K を参照)から低いものへと選択されます。たとえば、トークン A、B、C の確率が 0.3、0.2、0.1 であり、Top-P 値が
0.5
であるとします。この場合、モデルは温度を使用して A または B を次のトークンとして選択し、C は候補から除外します。ランダムなレスポンスを減らしたい場合は小さい値を、ランダムなレスポンスを増やしたい場合は大きい値を指定します。
- TOP_K: Top-K は、モデルが出力用にトークンを選択する方法を変更します。Top-K が
1
の場合、次に選択されるトークンは、モデルの語彙内のすべてのトークンで最も確率の高いものであることになります(グリーディ デコードとも呼ばれます)。Top-K が3
の場合は、最も確率が高い上位 3 つのトークンから次のトークン選択されることになります(温度を使用します)。トークン選択のそれぞれのステップで、最も高い確率を持つ Top-K のトークンがサンプリングされます。その後、トークンは Top-P に基づいてさらにフィルタリングされ、最終的なトークンは温度サンプリングを用いて選択されます。
ランダムなレスポンスを減らしたい場合は小さい値を、ランダムなレスポンスを増やしたい場合は大きい値を指定します。
HTTP メソッドと URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict
リクエストの本文(JSON):
{ "instances": [{ "context": "CONTEXT", "examples": [ { "input": {"content": "EXAMPLE_INPUT"}, "output": {"content": "EXAMPLE_OUTPUT"} }], "messages": [ { "author": "AUTHOR", "content": "CONTENT", }], }], "parameters": { "temperature": TEMPERATURE, "maxOutputTokens": MAX_OUTPUT_TOKENS, "topP": TOP_P, "topK": TOP_K } }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
curl コマンドの例
MODEL_ID="chat-bison"
PROJECT_ID=PROJECT_ID
curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
'{
"instances": [{
"context": "My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.",
"examples": [ {
"input": {"content": "Who do you work for?"},
"output": {"content": "I work for Ned."}
},
{
"input": {"content": "What do I like?"},
"output": {"content": "Ned likes watching movies."}
}],
"messages": [
{
"author": "user",
"content": "Are my favorite movies based on a book series?",
},
{
"author": "bot",
"content": "Yes, your favorite movies, The Lord of the Rings and The Hobbit, are based on book series by J.R.R. Tolkien.",
},
{
"author": "user",
"content": "When were these books published?",
}],
}],
"parameters": {
"temperature": 0.3,
"maxOutputTokens": 200,
"topP": 0.8,
"topK": 40
}
}'
Python
Vertex AI SDK for Python のインストールまたは更新の方法については、Vertex AI SDK for Python をインストールするをご覧ください。 詳細については、Python API リファレンス ドキュメントをご覧ください。
Node.js
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
Java
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
C#
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある C# の設定手順を完了してください。詳細については、Vertex AI C# API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
コンソール
Vertex AI Studio を使用して Google Cloud コンソールのチャット プロンプトをテストするには、次の操作を行います。
- Google Cloud コンソールの [Vertex AI] セクションで、[Vertex AI Studio] ページに移動します。
- [開始] タブをクリックします。
- [ テキスト チャット] をクリックします。
次のようにプロンプトを構成します。
- コンテキスト: モデルが実行するタスクの手順を入力し、モデルが参照するコンテキスト情報を含めます。
- 例: 少数ショット プロンプトの場合は、モデルが模倣する動作パターンを示す入出力の例を追加します。
モデルとパラメータを構成します。
- モデル: 使用するモデルを選択します。
Temperature: スライダーまたはテキスト ボックスを使用して、温度の値を入力します。
温度は、レスポンス生成時のサンプリングに使用されます。レスポンス生成は、topP
とtopK
が適用された場合に発生します。温度は、トークン選択のランダム性の度合いを制御します。温度が低いほど、確定的で自由度や創造性を抑えたレスポンスが求められるプロンプトに適しています。一方、温度が高いと、より多様で創造的な結果を導くことができます。温度が0
の場合、確率が最も高いトークンが常に選択されます。この場合、特定のプロンプトに対するレスポンスはほとんど確定的ですが、わずかに変動する可能性は残ります。モデルが返すレスポンスが一般的すぎる、短すぎる、あるいはフォールバック(代替)レスポンスが返ってくる場合は、温度を高く設定してみてください。
トークンの上限: スライダーまたはテキスト ボックスを使用して、最大出力の上限値を入力します。
レスポンスで生成できるトークンの最大数。1 トークンは約 4 文字です。100 トークンは約 60~80 語に相当します。レスポンスを短くしたい場合は小さい値を、長くしたい場合は大きい値を指定します。
Top-K: スライダーまたはテキスト ボックスを使用して、Top-K の値を入力します。
Top-K は、モデルが出力用にトークンを選択する方法を変更します。Top-K が1
の場合、次に選択されるトークンは、モデルの語彙内のすべてのトークンで最も確率の高いものであることになります(グリーディ デコードとも呼ばれます)。Top-K が3
の場合は、最も確率が高い上位 3 つのトークンから次のトークン選択されることになります(温度を使用します)。トークン選択のそれぞれのステップで、最も高い確率を持つ Top-K のトークンがサンプリングされます。その後、トークンは Top-P に基づいてさらにフィルタリングされ、最終的なトークンは温度サンプリングを用いて選択されます。
ランダムなレスポンスを減らしたい場合は小さい値を、ランダムなレスポンスを増やしたい場合は大きい値を指定します。
- Top-P: スライダーまたはテキスト ボックスを使用して、Top-P の値を入力します。確率の合計が Top-P の値と等しくなるまで、最も確率が高いものから最も確率が低いものの順に、トークンが選択されます。結果を最小にするには、トップ P を
0
に設定します。
- メッセージ ボックスにメッセージを入力して、chatbot との会話を開始します。chatbot は、以前のメッセージを新しいレスポンスのコンテキストとして使用します。
- 省略可: プロンプトを [マイプロンプト] に保存するには、[ 保存] をクリックします。
- 省略可: プロンプトの Python コードまたは curl コマンドを取得するには、[ コードを表示] をクリックします。
- 省略可: 以前のメッセージをすべて消去するには、[ CLEAR CONVERSATION] をクリックします。
チャットモデルからのレスポンスをストリーミングする
REST API を使用してサンプルコードのリクエストとレスポンスを表示するには、REST API の使用例をご覧ください。
Vertex AI SDK for Python を使用してサンプルコードのリクエストとレスポンスを表示するには、Vertex AI SDK for Python の使用例をご覧ください。
次のステップ
- 基盤モデルのチューニング方法を学習する。
- 責任ある AI のベスト プラクティスと Vertex AI の安全フィルタについて学習する。