Desenvolver e implantar agentes no Agente Engine
Esta página demonstra como criar e implantar um agente que retorna a taxa de câmbio entre duas moedas em uma data especificada.
Antes de começar
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Vertex AI and Cloud Storage APIs.
Para receber as permissões necessárias a fim de usar o Agente Engine, peça que o administrador conceda a você os seguintes papéis do IAM no projeto:
-
Usuário da Vertex AI (
roles/aiplatform.user
) -
Administrador de armazenamento (
roles/storage.admin
)
Para mais informações sobre a concessão de papéis, consulte Gerenciar o acesso a projetos, pastas e organizações.
Também é possível conseguir as permissões necessárias por meio de papéis personalizados ou de outros papéis predefinidos.
Instalar e inicializar o SDK do Vertex AI para Python
Execute o seguinte comando para instalar o SDK da Vertex AI para Python e outros pacotes necessários:
LangGraph
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]
LangChain
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]
AG2
pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,ag2]
Autenticar como usuário
Colab
Execute o seguinte código:
from google.colab import auth auth.authenticate_user(project_id="PROJECT_ID")
Cloud Shell
Nenhuma ação é necessária.
Shell local
Execute este comando:
gcloud auth application-default login
Execute o seguinte código para importar o mecanismo do agente e inicializar o SDK:
import vertexai from vertexai import agent_engines vertexai.init( project="PROJECT_ID", # Your project ID. location="LOCATION", # Your cloud region. staging_bucket="gs://BUCKET_NAME", # Your staging bucket. )
Desenvolver um agente
Primeiro, desenvolva uma ferramenta:
def get_exchange_rate(
currency_from: str = "USD",
currency_to: str = "EUR",
currency_date: str = "latest",
):
"""Retrieves the exchange rate between two currencies on a specified date."""
import requests
response = requests.get(
f"https://api.frankfurter.app/{currency_date}",
params={"from": currency_from, "to": currency_to},
)
return response.json()
Em seguida, instancie um agente:
LangGraph
from vertexai.preview.reasoning_engines import LanggraphAgent
agent = LanggraphAgent(
model="gemini-1.5-flash-001",
tools=[get_exchange_rate],
model_kwargs={
"temperature": 0.28,
"max_output_tokens": 1000,
"top_p": 0.95,
},
)
LangChain
from vertexai.preview.reasoning_engines import LangchainAgent
agent = LangchainAgent(
model="gemini-1.5-flash-001",
tools=[get_exchange_rate],
model_kwargs={
"temperature": 0.28,
"max_output_tokens": 1000,
"top_p": 0.95,
},
)
AG2
from vertexai.preview.reasoning_engines import AG2Agent
agent = AG2Agent(
model="gemini-1.5-flash-001",
runnable_name="Get Exchange Rate Agent",
tools=[get_exchange_rate],
)
Por fim, teste o agente localmente:
LangGraph
agent.query(input={"messages": [
("user", "What's the exchange rate from US dollars to Swedish currency?"),
]})
LangChain
agent.query(
input="What's the exchange rate from US dollars to Swedish currency?"
)
AG2
agent.query(
input="What's the exchange rate from US dollars to Swedish currency?"
)
Implantar um agente
Para implantar o agente:
LangGraph
remote_agent = agent_engines.create(
agent,
requirements=["google-cloud-aiplatform[agent_engines,langchain]"],
)
LangChain
remote_agent = agent_engines.create(
agent,
requirements=["google-cloud-aiplatform[agent_engines,langchain]"],
)
AG2
remote_agent = agent_engines.create(
agent,
requirements=["google-cloud-aiplatform[agent_engines,ag2]"],
)
Isso cria um recurso reasoningEngine
na Vertex AI.
Usar um agente
Teste o agente implantado enviando uma consulta:
LangGraph
remote_agent.query(input={"messages": [
("user", "What's the exchange rate from US dollars to Swedish currency?"),
]})
LangChain
remote_agent.query(
input="What's the exchange rate from US dollars to Swedish currency?"
)
AG2
remote_agent.query(
input="What's the exchange rate from US dollars to Swedish currency?"
)
Limpar
Para evitar cobranças na conta do Google Cloud pelos recursos usados nesta página, siga estas etapas.
remote_agent.delete()