Desenvolva e implemente agentes no Vertex AI Agent Engine

Esta página demonstra como criar e implementar um agente que devolve a taxa de câmbio entre duas moedas numa data especificada, usando as seguintes estruturas de agentes:

Antes de começar

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Vertex AI and Cloud Storage APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  8. Para receber as autorizações de que precisa para usar o Vertex AI Agent Engine, peça ao seu administrador que lhe conceda as seguintes funções de IAM no seu projeto:

    Para mais informações sobre a atribuição de funções, consulte o artigo Faça a gestão do acesso a projetos, pastas e organizações.

    Também pode conseguir as autorizações necessárias através de funções personalizadas ou outras funções predefinidas.

    Instale e inicialize o SDK Vertex AI para Python

    1. Execute o seguinte comando para instalar o SDK Vertex AI para Python e outros pacotes necessários:

      ADK

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,adk]>=1.112

      LangGraph

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112

      LangChain

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,langchain]>=1.112

      AG2

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,ag2]>=1.112

      LlamaIndex

      pip install --upgrade --quiet google-cloud-aiplatform[agent_engines,llama_index]>=1.112
    2. Autentique-se como utilizador

      Colab

      Execute o seguinte código:

      from google.colab import auth
      
      auth.authenticate_user(project_id="PROJECT_ID")
      

      Cloud Shell

      Não é necessária nenhuma ação.

      Shell local

      Execute o seguinte comando:

      gcloud auth application-default login
    3. Execute o seguinte código para importar o Vertex AI Agent Engine e inicializar o SDK:

      import vertexai
      
      client = vertexai.Client(
          project="PROJECT_ID",               # Your project ID.
          location="LOCATION",                # Your cloud region.
      )
      

      Onde:

    Desenvolva um agente

    Primeiro, desenvolva uma ferramenta:

    def get_exchange_rate(
        currency_from: str = "USD",
        currency_to: str = "EUR",
        currency_date: str = "latest",
    ):
        """Retrieves the exchange rate between two currencies on a specified date."""
        import requests
    
        response = requests.get(
            f"https://api.frankfurter.app/{currency_date}",
            params={"from": currency_from, "to": currency_to},
        )
        return response.json()
    

    Em seguida, instancie um agente:

    ADK

    from google.adk.agents import Agent
    from vertexai import agent_engines
    
    agent = Agent(
        model="gemini-2.0-flash",
        name='currency_exchange_agent',
        tools=[get_exchange_rate],
    )
    
    app = agent_engines.AdkApp(agent=agent)
    

    LangGraph

    from vertexai import agent_engines
    
    agent = agent_engines.LanggraphAgent(
        model="gemini-2.0-flash",
        tools=[get_exchange_rate],
        model_kwargs={
            "temperature": 0.28,
            "max_output_tokens": 1000,
            "top_p": 0.95,
        },
    )
    

    LangChain

    from vertexai import agent_engines
    
    agent = agent_engines.LangchainAgent(
        model="gemini-2.0-flash",
        tools=[get_exchange_rate],
        model_kwargs={
            "temperature": 0.28,
            "max_output_tokens": 1000,
            "top_p": 0.95,
        },
    )
    

    AG2

    from vertexai import agent_engines
    
    agent = agent_engines.AG2Agent(
        model="gemini-2.0-flash",
        runnable_name="Get Exchange Rate Agent",
        tools=[get_exchange_rate],
    )
    

    LlamaIndex

    from vertexai.preview import reasoning_engines
    
    def runnable_with_tools_builder(model, runnable_kwargs=None, **kwargs):
        from llama_index.core.query_pipeline import QueryPipeline
        from llama_index.core.tools import FunctionTool
        from llama_index.core.agent import ReActAgent
    
        llama_index_tools = []
        for tool in runnable_kwargs.get("tools"):
            llama_index_tools.append(FunctionTool.from_defaults(tool))
        agent = ReActAgent.from_tools(llama_index_tools, llm=model, verbose=True)
        return QueryPipeline(modules = {"agent": agent})
    
    agent = reasoning_engines.LlamaIndexQueryPipelineAgent(
        model="gemini-2.0-flash",
        runnable_kwargs={"tools": [get_exchange_rate]},
        runnable_builder=runnable_with_tools_builder,
    )
    

    Por fim, teste o agente localmente:

    ADK

    async for event in app.async_stream_query(
        user_id="USER_ID",
        message="What is the exchange rate from US dollars to SEK today?",
    ):
        print(event)
    

    onde USER_ID é um ID definido pelo utilizador com um limite de 128 carateres.

    LangGraph

    agent.query(input={"messages": [
        ("user", "What is the exchange rate from US dollars to SEK today?"),
    ]})
    

    LangChain

    agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    AG2

    agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    LlamaIndex

    agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    Implemente um agente

    Para implementar o agente:

    ADK

    remote_agent = client.agent_engines.create(
        agent=app,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,adk]"],
        }
    )
    

    LangGraph

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
        },
    )
    

    LangChain

    remote_agent = client.agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,langchain]"],
        },
    )
    

    AG2

    from vertexai import agent_engines
    
    remote_agent = agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,ag2]"],
        },
    )
    

    LlamaIndex

    from vertexai import agent_engines
    
    remote_agent = agent_engines.create(
        agent,
        config={
            "requirements": ["google-cloud-aiplatform[agent_engines,llama_index]"],
        },
    )
    

    Esta ação cria um recurso reasoningEngine no Vertex AI.

    Use um agente

    Teste o agente implementado enviando uma consulta:

    ADK

    async for event in remote_agent.async_stream_query(
        user_id="USER_ID",
        message="What is the exchange rate from US dollars to SEK today?",
    ):
        print(event)
    

    LangGraph

    remote_agent.query(input={"messages": [
        ("user", "What is the exchange rate from US dollars to SEK today?"),
    ]})
    

    LangChain

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    AG2

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    LlamaIndex

    remote_agent.query(
        input="What is the exchange rate from US dollars to SEK today?"
    )
    

    Limpar

    Para evitar incorrer em cobranças na sua Google Cloud conta pelos recursos usados nesta página, siga estes passos.

    remote_agent.delete(force=True)
    

    O que se segue?