Mendapatkan evaluasi model untuk regresi tabulasi
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Mendapatkan evaluasi model untuk regresi tabulasi menggunakan metode get_model_evaluation.
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[],[],null,["Gets a model evaluation for tabular regression using the get_model_evaluation method.\n\nExplore further\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Evaluate AutoML classification and regression models](/vertex-ai/docs/tabular-data/classification-regression/evaluate-model)\n\nCode sample \n\nJava\n\n\nBefore trying this sample, follow the Java setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Java API\nreference documentation](/java/docs/reference/google-cloud-aiplatform/latest/com.google.cloud.aiplatform.v1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n import com.google.cloud.aiplatform.v1.ModelEvaluation;\n import com.google.cloud.aiplatform.v1.ModelEvaluationName;\n import com.google.cloud.aiplatform.v1.ModelServiceClient;\n import com.google.cloud.aiplatform.v1.ModelServiceSettings;\n import java.io.IOException;\n\n public class GetModelEvaluationTabularRegressionSample {\n\n public static void main(String[] args) throws IOException {\n // TODO(developer): Replace these variables before running the sample.\n // To obtain evaluationId run the code block below after setting modelServiceSettings.\n //\n // try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings))\n // {\n // String location = \"us-central1\";\n // ModelName modelFullId = ModelName.of(project, location, modelId);\n // ListModelEvaluationsRequest modelEvaluationsrequest =\n // ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();\n // for (ModelEvaluation modelEvaluation :\n // modelServiceClient.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {\n // System.out.format(\"Model Evaluation Name: %s%n\", modelEvaluation.getName());\n // }\n // }\n String project = \"YOUR_PROJECT_ID\";\n String modelId = \"YOUR_MODEL_ID\";\n String evaluationId = \"YOUR_EVALUATION_ID\";\n getModelEvaluationTabularRegression(project, modelId, evaluationId);\n }\n\n static void getModelEvaluationTabularRegression(\n String project, String modelId, String evaluationId) throws IOException {\n ModelServiceSettings modelServiceSettings =\n ModelServiceSettings.newBuilder()\n .setEndpoint(\"us-central1-aiplatform.googleapis.com:443\")\n .build();\n\n // Initialize client that will be used to send requests. This client only needs to be created\n // once, and can be reused for multiple requests. After completing all of your requests, call\n // the \"close\" method on the client to safely clean up any remaining background resources.\n try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {\n String location = \"us-central1\";\n ModelEvaluationName modelEvaluationName =\n ModelEvaluationName.of(project, location, modelId, evaluationId);\n ModelEvaluation modelEvaluation = modelServiceClient.getModelEvaluation(modelEvaluationName);\n\n System.out.println(\"Get Model Evaluation Tabular Regression Response\");\n System.out.format(\"\\tName: %s\\n\", modelEvaluation.getName());\n System.out.format(\"\\tMetrics Schema Uri: %s\\n\", modelEvaluation.getMetricsSchemaUri());\n System.out.format(\"\\tMetrics: %s\\n\", modelEvaluation.getMetrics());\n System.out.format(\"\\tCreate Time: %s\\n\", modelEvaluation.getCreateTime());\n System.out.format(\"\\tSlice Dimensions: %s\\n\", modelEvaluation.getSliceDimensionsList());\n }\n }\n }\n\nNode.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n /**\n * TODO(developer): Uncomment these variables before running the sample\n * (not necessary if passing values as arguments). To obtain evaluationId,\n * instantiate the client and run the following the commands.\n */\n // const parentName = `projects/${project}/locations/${location}/models/${modelId}`;\n // const evalRequest = {\n // parent: parentName\n // };\n // const [evalResponse] = await modelServiceClient.listModelEvaluations(evalRequest);\n // console.log(evalResponse);\n\n // const modelId = 'YOUR_MODEL_ID';\n // const evaluationId = 'YOUR_EVALUATION_ID';\n // const project = 'YOUR_PROJECT_ID';\n // const location = 'YOUR_PROJECT_LOCATION';\n\n // Imports the Google Cloud Model Service Client library\n const {ModelServiceClient} = require('@google-cloud/aiplatform');\n\n // Specifies the location of the api endpoint\n const clientOptions = {\n apiEndpoint: 'us-central1-aiplatform.googleapis.com',\n };\n\n // Instantiates a client\n const modelServiceClient = new ModelServiceClient(clientOptions);\n\n async function getModelEvaluationTabularRegression() {\n // Configure the parent resources\n const name = `projects/${project}/locations/${location}/models/${modelId}/evaluations/${evaluationId}`;\n const request = {\n name,\n };\n\n // Get model evaluation request\n const [response] = await modelServiceClient.getModelEvaluation(request);\n\n console.log('Get model evaluation tabular regression response');\n console.log(`\\tName : ${response.name}`);\n console.log(`\\tMetrics schema uri : ${response.metricsSchemaUri}`);\n console.log(`\\tMetrics : ${JSON.stringify(response.metrics)}`);\n console.log(`\\tCreate time : ${JSON.stringify(response.createTime)}`);\n console.log(`\\tSlice dimensions : ${response.sliceDimensions}`);\n\n const modelExplanation = response.modelExplanation;\n console.log('\\tModel explanation');\n if (!modelExplanation) {\n console.log('\\t\\t{}');\n } else {\n const meanAttributions = modelExplanation.meanAttributions;\n if (!meanAttributions) {\n console.log('\\t\\t\\t []');\n } else {\n for (const meanAttribution of meanAttributions) {\n console.log('\\t\\tMean attribution');\n console.log(\n `\\t\\t\\tBaseline output value : \\\n ${meanAttribution.baselineOutputValue}`\n );\n console.log(\n `\\t\\t\\tInstance output value : \\\n ${meanAttribution.instanceOutputValue}`\n );\n console.log(\n `\\t\\t\\tFeature attributions : \\\n ${JSON.stringify(meanAttribution.featureAttributions)}`\n );\n console.log(`\\t\\t\\tOutput index : ${meanAttribution.outputIndex}`);\n console.log(\n `\\t\\t\\tOutput display name : \\\n ${meanAttribution.outputDisplayName}`\n );\n console.log(\n `\\t\\t\\tApproximation error : \\\n ${meanAttribution.approximationError}`\n );\n }\n }\n }\n }\n getModelEvaluationTabularRegression();\n\nPython\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google.cloud import aiplatform\n\n\n def get_model_evaluation_tabular_regression_sample(\n project: str,\n model_id: str,\n evaluation_id: str,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n \"\"\"\n To obtain evaluation_id run the following commands where LOCATION\n is the region where the model is stored, PROJECT is the project ID,\n and MODEL_ID is the ID of your model.\n\n model_client = aiplatform.gapic.ModelServiceClient(\n client_options={\n 'api_endpoint':'LOCATION-aiplatform.googleapis.com'\n }\n )\n evaluations = model_client.list_model_evaluations(parent='projects/PROJECT/locations/LOCATION/models/MODEL_ID')\n print(\"evaluations:\", evaluations)\n \"\"\"\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform.gapic.ModelServiceClient(client_options=client_options)\n name = client.model_evaluation_path(\n project=project, location=location, model=model_id, evaluation=evaluation_id\n )\n response = client.get_model_evaluation(name=name)\n print(\"response:\", response)\n\nWhat's next\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]