Membuat tugas penyesuaian hyperparameter

Membuat tugas penyesuaian hyperparameter menggunakan metode create_hyperparameter_tuning_job.

Contoh kode

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import com.google.cloud.aiplatform.v1.AcceleratorType;
import com.google.cloud.aiplatform.v1.ContainerSpec;
import com.google.cloud.aiplatform.v1.CustomJobSpec;
import com.google.cloud.aiplatform.v1.HyperparameterTuningJob;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.StudySpec;
import com.google.cloud.aiplatform.v1.WorkerPoolSpec;
import java.io.IOException;

public class CreateHyperparameterTuningJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String displayName = "DISPLAY_NAME";
    String containerImageUri = "CONTAINER_IMAGE_URI";
    createHyperparameterTuningJobSample(project, displayName, containerImageUri);
  }

  static void createHyperparameterTuningJobSample(
      String project, String displayName, String containerImageUri) throws IOException {
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      StudySpec.MetricSpec metric0 =
          StudySpec.MetricSpec.newBuilder()
              .setMetricId("accuracy")
              .setGoal(StudySpec.MetricSpec.GoalType.MAXIMIZE)
              .build();
      StudySpec.ParameterSpec.DoubleValueSpec doubleValueSpec =
          StudySpec.ParameterSpec.DoubleValueSpec.newBuilder()
              .setMinValue(0.001)
              .setMaxValue(0.1)
              .build();
      StudySpec.ParameterSpec parameter0 =
          StudySpec.ParameterSpec.newBuilder()
              // Learning rate.
              .setParameterId("lr")
              .setDoubleValueSpec(doubleValueSpec)
              .build();
      StudySpec studySpec =
          StudySpec.newBuilder().addMetrics(metric0).addParameters(parameter0).build();
      MachineSpec machineSpec =
          MachineSpec.newBuilder()
              .setMachineType("n1-standard-4")
              .setAcceleratorType(AcceleratorType.NVIDIA_TESLA_T4)
              .setAcceleratorCount(1)
              .build();
      ContainerSpec containerSpec =
          ContainerSpec.newBuilder().setImageUri(containerImageUri).build();
      WorkerPoolSpec workerPoolSpec0 =
          WorkerPoolSpec.newBuilder()
              .setMachineSpec(machineSpec)
              .setReplicaCount(1)
              .setContainerSpec(containerSpec)
              .build();
      CustomJobSpec trialJobSpec =
          CustomJobSpec.newBuilder().addWorkerPoolSpecs(workerPoolSpec0).build();
      HyperparameterTuningJob hyperparameterTuningJob =
          HyperparameterTuningJob.newBuilder()
              .setDisplayName(displayName)
              .setMaxTrialCount(2)
              .setParallelTrialCount(1)
              .setMaxFailedTrialCount(1)
              .setStudySpec(studySpec)
              .setTrialJobSpec(trialJobSpec)
              .build();
      LocationName parent = LocationName.of(project, location);
      HyperparameterTuningJob response =
          client.createHyperparameterTuningJob(parent, hyperparameterTuningJob);
      System.out.format("response: %s\n", response);
      System.out.format("Name: %s\n", response.getName());
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 * (Not necessary if passing values as arguments)
 */
/*
const displayName = 'YOUR HYPERPARAMETER TUNING JOB;
const containerImageUri = 'TUNING JOB CONTAINER URI;
const project = 'YOUR PROJECT ID';
const location = 'us-central1';
  */
// Imports the Google Cloud Pipeline Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function createHyperParameterTuningJob() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  // Create the hyperparameter tuning job configuration
  const hyperparameterTuningJob = {
    displayName,
    maxTrialCount: 2,
    parallelTrialCount: 1,
    maxFailedTrialCount: 1,
    studySpec: {
      metrics: [
        {
          metricId: 'accuracy',
          goal: 'MAXIMIZE',
        },
      ],
      parameters: [
        {
          parameterId: 'lr',
          doubleValueSpec: {
            minValue: 0.001,
            maxValue: 0.1,
          },
        },
      ],
    },
    trialJobSpec: {
      workerPoolSpecs: [
        {
          machineSpec: {
            machineType: 'n1-standard-4',
            acceleratorType: 'NVIDIA_TESLA_K80',
            acceleratorCount: 1,
          },
          replicaCount: 1,
          containerSpec: {
            imageUri: containerImageUri,
            command: [],
            args: [],
          },
        },
      ],
    },
  };

  const [response] = await jobServiceClient.createHyperparameterTuningJob({
    parent,
    hyperparameterTuningJob,
  });

  console.log('Create hyperparameter tuning job response:');
  console.log(`\tDisplay name: ${response.displayName}`);
  console.log(`\tTuning job resource name: ${response.name}`);
  console.log(`\tJob status: ${response.state}`);
}

createHyperParameterTuningJob();

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import aiplatform


def create_hyperparameter_tuning_job_sample(
    project: str,
    display_name: str,
    container_image_uri: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    hyperparameter_tuning_job = {
        "display_name": display_name,
        "max_trial_count": 2,
        "parallel_trial_count": 1,
        "max_failed_trial_count": 1,
        "study_spec": {
            "metrics": [
                {
                    "metric_id": "accuracy",
                    "goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MAXIMIZE,
                }
            ],
            "parameters": [
                {
                    # Learning rate.
                    "parameter_id": "lr",
                    "double_value_spec": {"min_value": 0.001, "max_value": 0.1},
                },
            ],
        },
        "trial_job_spec": {
            "worker_pool_specs": [
                {
                    "machine_spec": {
                        "machine_type": "n1-standard-4",
                        "accelerator_type": aiplatform.gapic.AcceleratorType.NVIDIA_TESLA_K80,
                        "accelerator_count": 1,
                    },
                    "replica_count": 1,
                    "container_spec": {
                        "image_uri": container_image_uri,
                        "command": [],
                        "args": [],
                    },
                }
            ]
        },
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_hyperparameter_tuning_job(
        parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job
    )
    print("response:", response)

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.