Membuat tugas pelabelan data untuk video

Membuat tugas pelabelan data untuk video menggunakan metode create_data_labeling_job.

Contoh kode

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.aiplatform.v1.DataLabelingJob;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import com.google.type.Money;
import java.io.IOException;
import java.util.Map;

public class CreateDataLabelingJobVideoSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String displayName = "YOUR_DATA_LABELING_DISPLAY_NAME";
    String datasetId = "YOUR_DATASET_ID";
    String instructionUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_data_labeling_source/file.pdf";
    String annotationSpec = "YOUR_ANNOTATION_SPEC";
    createDataLabelingJobVideo(project, displayName, datasetId, instructionUri, annotationSpec);
  }

  static void createDataLabelingJobVideo(
      String project,
      String displayName,
      String datasetId,
      String instructionUri,
      String annotationSpec)
      throws IOException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";
      LocationName locationName = LocationName.of(project, location);

      String jsonString = "{\"annotation_specs\": [ " + annotationSpec + "]}";
      Value.Builder annotationSpecValue = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, annotationSpecValue);

      DatasetName datasetName = DatasetName.of(project, location, datasetId);
      DataLabelingJob dataLabelingJob =
          DataLabelingJob.newBuilder()
              .setDisplayName(displayName)
              .setLabelerCount(1)
              .setInstructionUri(instructionUri)
              .setInputsSchemaUri(
                  "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/"
                      + "video_classification.yaml")
              .addDatasets(datasetName.toString())
              .setInputs(annotationSpecValue)
              .putAnnotationLabels(
                  "aiplatform.googleapis.com/annotation_set_name", "my_test_saved_query")
              .build();

      DataLabelingJob dataLabelingJobResponse =
          jobServiceClient.createDataLabelingJob(locationName, dataLabelingJob);

      System.out.println("Create Data Labeling Job Video Response");
      System.out.format("\tName: %s\n", dataLabelingJobResponse.getName());
      System.out.format("\tDisplay Name: %s\n", dataLabelingJobResponse.getDisplayName());
      System.out.format("\tDatasets: %s\n", dataLabelingJobResponse.getDatasetsList());
      System.out.format("\tLabeler Count: %s\n", dataLabelingJobResponse.getLabelerCount());
      System.out.format("\tInstruction Uri: %s\n", dataLabelingJobResponse.getInstructionUri());
      System.out.format("\tInputs Schema Uri: %s\n", dataLabelingJobResponse.getInputsSchemaUri());
      System.out.format("\tInputs: %s\n", dataLabelingJobResponse.getInputs());
      System.out.format("\tState: %s\n", dataLabelingJobResponse.getState());
      System.out.format("\tLabeling Progress: %s\n", dataLabelingJobResponse.getLabelingProgress());
      System.out.format("\tCreate Time: %s\n", dataLabelingJobResponse.getCreateTime());
      System.out.format("\tUpdate Time: %s\n", dataLabelingJobResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", dataLabelingJobResponse.getLabelsMap());
      System.out.format(
          "\tSpecialist Pools: %s\n", dataLabelingJobResponse.getSpecialistPoolsList());
      for (Map.Entry<String, String> annotationLabelMap :
          dataLabelingJobResponse.getAnnotationLabelsMap().entrySet()) {
        System.out.println("\tAnnotation Level");
        System.out.format("\t\tkey: %s\n", annotationLabelMap.getKey());
        System.out.format("\t\tvalue: %s\n", annotationLabelMap.getValue());
      }

      Money money = dataLabelingJobResponse.getCurrentSpend();
      System.out.println("\tCurrent Spend");
      System.out.format("\t\tCurrency Code: %s\n", money.getCurrencyCode());
      System.out.format("\t\tUnits: %s\n", money.getUnits());
      System.out.format("\t\tNanos: %s\n", money.getNanos());
    }
  }
}

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Python Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value


def create_data_labeling_job_video_sample(
    project: str,
    display_name: str,
    dataset: str,
    instruction_uri: str,
    annotation_spec: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    inputs_dict = {"annotation_specs": [annotation_spec]}
    inputs = json_format.ParseDict(inputs_dict, Value())

    data_labeling_job = {
        "display_name": display_name,
        # Full resource name: projects/{project_id}/locations/{location}/datasets/{dataset_id}
        "datasets": [dataset],
        # labeler_count must be 1, 3, or 5
        "labeler_count": 1,
        "instruction_uri": instruction_uri,
        "inputs_schema_uri": "gs://google-cloud-aiplatform/schema/datalabelingjob/inputs/video_classification_1.0.0.yaml",
        "inputs": inputs,
        "annotation_labels": {
            "aiplatform.googleapis.com/annotation_set_name": "my_test_saved_query"
        },
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_data_labeling_job(
        parent=parent, data_labeling_job=data_labeling_job
    )
    print("response:", response)

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.