
Application Layer
Transport Security
Cesar Ghali, Adam Stubblefield, Ed Knapp, Jiangtao Li, Benedikt Schmidt, Julien Boeuf

Table of Contents

Executive summary	 1
1. Introduction	 2
2. Application-Level Security and ALTS	 2
	 2.1 Why Not TLS?			
	 2.2 ALTS Design	

3. ALTS Trust Model	 4
 	 3.1 ALTS Credentials	
	 	 3.1.1 Certificate Issuance	
	 	 3.1.2 Human Certificates	
	 	 3.1.3 Machine Certificates	
	 	 3.1.4 Workload Certificates	
	 3.2 ALTS Policy Enforcement
	 3.3 Certificate Revocation

4. ALTS Protocols	 11
	 4.1 Handshake Protocol	
	 4.2 Record Protocol	
		 4.2.1 Framing	
		 4.2.2 Payload	
	 4.3 Session Resumption	

5. Tradeoffs	 15
	 5.1 Key Compromise Impersonation Attacks	
	 5.2 Privacy for Handshake Messages	
	 5.3 Perfect Forward Secrecy	
	 5.4 Zero-Roundtrip Resumption

6. Further References	 16
	

The content contained herein is correct as of December 2017. This whitepaper represents the status quo as of the time it was written. Google Cloud’s security
policies and systems might change going forward, as we continually improve protection for our customers.

Executive summary
•	Google’s Application Layer Transport Security (ALTS) is a mutual authentication
	 and transport encryption system developed by Google and typically used
	 for securing Remote Procedure Call (RPC) communications within Google’s
	 infrastructure. ALTS is similar in concept to mutually authenticated TLS but
	 has been designed and optimized to meet the needs of Google’s datacenter
	 environments.

•	The ALTS trust model has been tailored for cloud-like containerized applications.
	 Identities are bound to entities instead of to a specific server name or host. This
	 trust model facilitates seamless microservice replication, load balancing, and
	 rescheduling across hosts.

•	ALTS relies on two protocols: the Handshake protocol (with session resumption)
	 and the Record protocol. These protocols govern how sessions are established,
	 authenticated, encrypted, and resumed.

•	ALTS is a custom transport layer security solution that we use at Google. We have
	 tailored ALTS to our production environment, so there are some tradeoffs
	 between ALTS and the industry standard, TLS. Section 5 discusses these
	 tradeoffs in more detail.

1

https://www.ietf.org/rfc/rfc5246.txt

1 A microservice is an architectural style that structures an application as a collection of loosely coupled services which implement business capabilities.
2 A production workload is an application that Google engineers schedule to run in Google’s datacenters.
3 For more information on how Google protects data in transit, see our whitepaper, “Encryption in Transit in Google Cloud”.

1. Introduction

Production systems at Google consist of a constellation of microservices1 that
collectively issue O(1010) Remote Procedure Calls (RPCs) per second. When a
Google engineer schedules a production workload2, any RPCs issued or received
by that workload are protected with ALTS by default. This automatic, zero-
configuration protection is provided by Google’s Application Layer Transport
Security (ALTS). In addition to the automatic protections conferred on RPC’s,
ALTS also facilitates easy service replication, load balancing, and rescheduling
across production machines. This paper describes ALTS and explores its
deployment over Google’s production infrastructure.

Audience: This document is aimed at infrastructure security professionals who
are curious about how authentication and transport security are performed at
scale in Google.

Prerequisites: In addition to this introduction, we assume a basic understanding
of cluster management at Google.

2. Application-Level Security
and ALTS

Many applications, from web browsers to VPNs, rely on secure communication
protocols, such as TLS (Transport Layer Security) and IPSec, to protect
data in transit3. At Google, we use ALTS, a mutual authentication and
transport encryption system that runs at the application layer, to protect RPC
communications. Using application-level security allows applications to have
authenticated remote peer identity, which can be used to implement fine-grained
authorization policies.

2.1 Why Not TLS?

It may seem unusual for Google to use a custom security solution such as ALTS
when the majority of Internet traffic today is encrypted using TLS. ALTS began
development at Google in 2007. At the time, TLS was bundled with support for
many legacy protocols that did not satisfy our minimum security standards.
We could have designed our security solution by adopting the TLS components
we needed and implementing the ones we wanted; however, the advantages of
building a more Google-suited system from scratch outweighed the benefits of
patching an existing system. In addition, ALTS is more appropriate for our needs,

When a Google
engineer schedules a
production workload,
any RPCs that
workload issues
has automatic,
zero-configuration
protection using
Google’s Application
Layer Transport
Security (ALTS).

2

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/security/encryption-in-transit

and historically more secure than older TLS. Listed below are the key differences
between TLS and ALTS.	
	
	 • There is a significant difference between the trust models4 of TLS with
		 HTTPS semantics and ALTS. In the former, server identities are bound to a
		 specific name and corresponding naming scheme. In ALTS, the same
		 identity can be used with multiple naming schemes. This level of indirection
		 provides more flexibility and greatly simplifies the process of microservice
		 replication, load balancing, and rescheduling between hosts.

	 • Compared to TLS, ALTS is simpler in its design and implementation. As a
		 result, it is easier to monitor for bugs and security vulnerabilities using
		 manual inspection of source code or extensive fuzzing.

	 • ALTS uses Protocol Buffer to serialize its certificates and protocol
		 messages, while TLS uses X.509 certificates encoded with ASN.1. The 	
	 majority of our production services use protocol buffers for communication 	
		 (and sometimes storage), making ALTS a better fit for Google’s environment.

2.2 ALTS Design

ALTS is designed to be a highly reliable, trusted system that allows for service-
to-service authentication and security with minimal user involvement. To achieve
this, the properties listed below are part of ALTS’s design:

	 • Transparency: ALTS configuration is transparent to the application layer.
		 By default, service RPCs are secured using ALTS. This allows application
		 developers to focus on the functional logic of their services without having
		 to worry about credential management or security configurations. During
		 service-to-service connection establishment, ALTS provides applications
		 with an authenticated remote peer identity which can be used for fine-
		 grained authorization checks and auditing.

	 • State-of-the-art cryptography: All cryptographic primitives and protocols
		 used by ALTS are up-to-date with current known attacks. ALTS runs on
		 Google-controlled machines, meaning that all supported cryptographic
		 protocols can be easily upgraded and quickly deployed.

	 • Identity model: ALTS performs authentication primarily by identity rather
		 than host name. At Google, every network entity (e.g. a corporate user,
		 a physical machine, or a production service or workload) has an associated
		 identity. All communications between services are mutually authenticated.

ALTS is designed to
be a highly reliable,
trusted system that
allows for service-to-
service authentication
and security with
minimal user
involvement.

4 A trust model is the mechanism through with a security protocol identifies, distributes and rotates credentials and identities.
3

https://developers.google.com/protocol-buffers/docs/proto3

	 • Key distribution: ALTS relies on each workload having an identity, which
		 is expressed as a set of credentials. These credentials are deployed in each
		 workload during initialization, without user involvement. In parallel, a root of
		 trust and a trust chain for these credentials are established for machines
		 and workloads. The system allows for automatic certificate rotation and
		 revocation without application developers involvement.

	 • Scalability: ALTS is designed to be very scalable in order to support the
		 massive scale of Google’s infrastructure. This requirement resulted in the
		 development of efficient session resumption, see Section 4.3.

	 • Long-lived connections: Authenticated key exchange cryptographic
		 operations are computationally expensive. To accommodate the scale of
		 Google’s infrastructure, after an initial ALTS handshake, connections can be
		 persisted for a longer time to improve overall system performance.

	 • Simplicity: TLS by default comes with support for legacy protocol versions
		 and backwards compatibility. ALTS is considerably simpler as Google
		 controls both clients and servers, which we designed to natively
		 support ALTS.

3. ALTS Trust Model
ALTS performs authentication primarily by identity rather than host. At
Google, every network entity (e.g., a corporate user, a physical machine, or a
production service) has an associated identity. These identities are embedded
in ALTS certificates and used for peer authentication during secure connection
establishment. The model we pursue is that our production services run as
production entities that can be managed by our Site Reliability Engineers
(SREs)5. The development versions of these production services run as test
entities that can be managed by both SREs and developers.

For example, let’s assume we have a product with two services: service-
frontend and service-backend. SREs can launch the production version
of these services: service-frontend-prod and service-backend-
prod. Developers can build and launch development versions of these services,
service-frontend-dev and service-backend-dev, for testing
purposes. The authorization policy in the production services will be configured
not to trust the development versions of the services.

3.1 ALTS Credentials

There are three types of ALTS credential, all of which are expressed in Protocol
Buffer message format.

ALTS performs
authentication
primarily by identity
rather than host.
At Google, every
network entity (e.g.,
a corporate user, a
physical machine, or
a production service)
has an associated
identity.

4
5 Some services are managed directly by developers.

https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3

5

	 • Master certificate: signed by a remote Signing Service and used to verify
		 handshake certificates. The master certificate contains a public key
		 associated with a master private key, e.g., RSA keypair. This private key
		 is used to sign handshake certificates. These certificates, when exercised in
		 combination with the ALTS policy discussed below, are essentially
		 constrained intermediate Certificate Authority (CA) certificates. Master 	
		 certificates are typically issued for production machines and schedulers of 	
		 containerized workloads such as the Borgmaster6.

	 • Handshake certificate: created and signed locally by the master private
		 key. This certificate contains the parameters used during the ALTS
		 handshake (secure connection establishment), for example, static
		 Diffie-Hellman (DH) parameters and the handshake ciphers. Also, the
		 handshake certificate contains the master certificate that it is derived from,
		 i.e., the one associated with the master private key that signs the handshake
		 certificate.

	 • Resumption key: is a secret that is used to encrypt resumption tickets. This
		 key is identified by a Resumption Identifier IDR that is unique for, and shared
		 among, all production workloads running with the same identity and in the
		 same datacenter cell. For more details on session resumption in ALTS, see
		 Section 4.3.

Figure 1 shows the ALTS certificate chain, which consists of a Signing Service
verification key, a master certificate and a handshake certificate. The Signing
Service verification keys are the root of trust in ALTS and are installed on all
Google machines in our production and corporate networks.

In ALTS, a Signing Service certifies Master certificates which in turn certify
Handshake certificates. As Handshake certificates are created more often than
Master certificates, this architecture reduces the load on the Signing service.
Certificate rotation happens frequently at Google, especially for handshake
certificates7. This frequent rotation compensates for the static key exchange
pairs carried by the handshake certificates8.

3.1.1 Certificate Issuance
In order to participate in an ALTS secure handshake, entities on the network need
to be provisioned with handshake certificates. First, the issuer obtains a master
certificate signed by the Signing Service and optionally passes it down to the
entity. Then, a handshake certificate is created and signed by the associated
master private key.

Figure 1: ALTS
certificate chain

6 Borgmaster is responsible for scheduling and initializing Google production workloads. For more information see Large-scale cluster management at Google with Borg.
7 More information about certificate rotation frequencies can be found in “Encryption in Transit in Google Cloud”.
8 If a key is compromised, only the traffic for the lifetime of this keypair will be discoverable by the attacker.

https://research.google.com/pubs/pub43438.html
https://cloud.google.com/security/encryption-in-transit

Typically, the issuer is our internal Certificate Authority (CA) when issuing
certificates to machines and humans, or the Borgmaster when issuing
certificates to workloads. However, it can be any other entity, e.g., a restricted
Borgmaster for a test datacenter cell.

Figure 2 shows how the Signing service is used to create a master certificate.
The process consists of the following steps.

	 1. The Certificate Issuer sends a Certificate Signing Request (CSR) to the
		 Signing Service. This request asks the Signing Service to create a
		 certificate for identity A. This identity, for example, can be a corporate user
		 or the identity of a Google production service.
	 2. The Signing Service sets the issuer of the certificate (included in the CSR)
		 to the requester (the Certificate Issuer in this case) and signs it. Recall
		 that the corresponding Signing Service public (verifying) key is installed
		 on all Google machines.
	 3. The Signing Service sends the signed certificate back.
	 4. A handshake certificate is created for identity A and is signed by the
		 master certificate associated private key.

As shown in the process above, with ALTS, the issuer and signer of a certificate
are two different logical entities. In this case, the issuer is the Certificate Issuer
entity while the signer is the Signing Service.

There are three common categories of certificates in ALTS, namely: Human,
Machine, and Workload. The following sections outline how each of these
certificates are created and used in ALTS.

3.1.2 Human Certificates
At Google, we use ALTS to secure RPCs issued by human users to production
services. To issue an RPC, a user must provide a valid handshake certificate.
For example, if Alice wants to use an application to issue an ALTS-secure RPC,

6

Figure 2: Certificate
Issuance

7

she can authenticate to our internal CA. Alice authenticates to the CA using her
username, password, and two-factor authentication. This operation results in
Alice getting a handshake certificate that is valid for 20 hours.

3.1.3 Machine Certificates
Every production machine in Google’s datacenters has a machine master
certificate. This certificate is used to create handshake certificates for core
applications on that machine, e.g. machine management daemons. The primary
identity embedded in a machine certificate refers to the typical purpose of the
machine. For example, machines used to run different kinds of production and
development workloads can have different identities. The master certificates
are only usable by machines running verified software stacks; in some cases
this trust is rooted in custom security hardware9. All production machine
master certificates are issued by the CA and rotated every few months. Also, all
handshake certificates are rotated every few hours.

3.1.4 Workload Certificates
A key advantage of ALTS is that it operates on the idea of a workload identity
which facilitates easy service replication, load balancing, and rescheduling
across machines. In our production network, we use a system called Borg10 for
cluster management and machine resource allocation at scale. The way that
Borg issues certificates is part of the ALTS machine-independent workload
identity implementation. The remainder of this section provides an overview
of our workload certification.

Each workload in our production network runs in a Borg cell. Each cell contains
a logically centralized controller called the Borgmaster, and several agent
processes called Borglets that run on each machine in that cell. Workloads
are initialized with associated Workload Handshake Certificates issued by the
Borgmaster. Figure 3 shows the process of workload certification in ALTS
with Borg.

	 1. Each Borgmaster comes pre-installed with a Machine Master Certificate
		 and associated private key (not shown in the diagram).
	 2. The ALTSd11 generates a Borgmaster Handshake Certificate and signs
	 	 it using the Machine Master private key. This Handshake Certificate
		 allows Borgmaster to issue ALTS-secure RPCs.	
	 3. The Borgmaster creates a Base Workload Master Certificate, and the
		 corresponding private key. The Borgmaster initiates a request to get
		 its Base Workload Master Certificate signed by the Signing Service.
		 As a result, the Signing Service lists the Borgmaster as the issuer on
		 this certificate.

The Borgmaster is now ready to schedule workloads that need to use ALTS. The
steps below happen when a client schedules a workload to run on Borg as a
given identity.

9 Titan in depth: Security in plaintext.
10 Large-scale cluster management at Google with Borg.
11 ALTSd: a daemon responsible for, amongst other ALTS operations, the creation of handshake certificates.

https://cloudplatform.googleblog.com/2017/08/Titan-in-depth-security-in-plaintext.html
https://research.google.com/pubs/pub43438.html

	 4. The Borgmaster verifies that the client is authorized to run workloads as
		 the identity that is specified in the workload configuration. If so, the
		 Borgmaster schedules the Borg workload on the Borglet, and issues
		 a Workload Handshake Certificate and its corresponding private key. This
		 certificate is chained from the Base Workload Master Certificate. The
		 Workload Handshake Certificate and its private key are then securely
		 delivered to the Borglet (over a mutually authenticated ALTS protected
		 channel between the Borgmaster and the Borglet). The Borgmaster 	
		 rotates its Base Workload Master Certificate and reissues Handshake
		 Certificates for all running workloads approximately every two days.
		 In addition, each workload running as the same user in the same cell
		 receives the same resumption key and identifier (IDR) provisioned by
		 the Borgmaster.
	 5. When the workload needs to make an ALTS-secure RPC, it uses the
		 Workload Handshake Certificate in the handshake protocol. IDR is also
		 used as part of the handshake to initiate session resumption. For more
		 information about session resumption in ALTS, see Section 4.3.

8

Figure 3: Handshake Certificate
Creation in the Google
Production Network

3.2 ALTS Policy Enforcement

The ALTS policy is a document that lists which issuers are authorized to issue
certain categories of certificates for which identities. It is distributed to every
machine on our production network. For example, the ALTS policy allows the CA
to issue certificate to machines and humans. It also allows Borgmaster to issue
certificates to workloads.

We have found that policy enforcement during certificate verification, as opposed
to certificate issuance, is a more flexible approach as it allows for different
policies to be enforced on different types of deployments. For example, we may
want a policy in a test cluster to be more permissive than one in a production
cluster.

During the ALTS handshake, the certificate validation includes a check of the
ALTS policy. The policy ensures that the issuer listed in the certificate being
validated is authorized to issue that certificate. If that is not the case, the
certificate is rejected and the handshake process fails. Figure 4 illustrates how
the policy enforcement works in ALTS. Following the scenario in Figure 2, assume
that Mallory (a corporate user who wants to escalate her privileges) wants to
issue a master certificate to the Network Admin, which is a powerful identity that
can reconfigure the network. It goes without saying that Mallory is not authorized
on the ALTS policy to perform this operation.

	 1. Mallory issues a master certificate for Network Admin identity and gets it
		 signed by the Signing Service. This is similar to the first three steps in
		 Figure 2.	
	 2. Mallory creates and signs a handshake certificate locally for Network
		 Admin, using the master private key associated with the created master
		 certificate.	

9

Figure 4: Certificate
Issuance and Usage

	 3. If Mallory tries to impersonate the Network Admin identity by using the
		 created handshake certificate, the ALTS policy enforcer, at the peer that
		 Mallory tries to communicate with, will block the operation.

3.3 Certificate Revocation

At Google, a certificate is invalidated when it expires or it is included in our
Certificate Revocation List (CRL). This section describes the design of Google’s
internal certificate revocation mechanisms, which, at the time of writing this
paper, are still undergoing deployment testing.

All certificates issued to human corporate users have a daily expiration
timestamp which forces the users to reauthenticate daily. Many of the
certificates issued to production machines do not use expiration timestamps.
We avoid relying on timestamps to expire production certificates as it can lead to
outages caused by clock synchronization issues. Instead, we use the CRL as our
source of truth for rotation and incident-response handling of certificates. Figure
5 shows how the CRL operates.

	 1. When an instance of our CA is initialized12, it contacts the CRL Service
		 and asks for a revocation ID range. A revocation ID is a 64-bit long ID

10

Figure 5: Master Certificate
Creation with a Revocation ID

12 In practice, the CA has access to the Signing Service private keys, making the two logical entities as a single physical one.

		 with two components, an 8-bit certificate category (e.g. human or
		 machine certificate), and a 56-bit certificate identifier. The CRL Service 	
	 chooses a range of these IDs and returns it to the CA.
	 2. When the CA receives a request for a master certificate, it creates the
		 certificate and embeds a revocation ID it picks from the range.
	 3. In parallel, the CA maps the new certificate to the revocation ID and
		 sends this information to the CRL Service.
	 4. The CA issues the master certificate.

Revocation IDs assigned to handshake certificates depend on how the
certificate is used. For example, handshake certificates that are issued to
human corporate users inherit the revocation ID of the user’s master certificate.
For handshake certificates that are issued to Borg workloads, the revocation
ID is assigned by the Borgmaster’s range of revocation IDs. This ID range is
assigned to the Borgmaster by the CRL Service in a process similar to that
shown in Figure 5. Whenever a peer is involved in an ALTS handshake, it checks
a local copy of the CRL file to ensure that the remote peer certificate has not
been revoked.

The CRL Service compiles all revocation IDs into a single file that can be
pushed to all Google machines that use ALTS. While the CRL database is
several hundred megabytes, the generated CRL file is only a few megabytes
due to a variety of compression techniques.

4. ALTS Protocols
ALTS relies on two protocols: the Handshake protocol (with session
resumption) and the Record protocol. This section provides a high level
overview of each protocol. These overviews should not be interpreted as
detailed specifications of the protocols.

4.1 Handshake Protocol

The ALTS handshake protocol is a Diffie-Hellman-based authenticated key
exchange protocol that supports both Perfect Forward Secrecy (PFS) and
session resumption. The ALTS infrastructure ensures that each client and
server have a certificate with their respective identities and an Elliptic Curve
Diffie-Hellman (ECDH) key that chains to a trusted Signing Service verification
key. In ALTS, PFS is not enabled by default because these static ECDH keys
are frequently updated to renew forward secrecy even if PFS is not used on
a handshake. During a handshake, the client and server securely negotiate a
shared transit encryption key, and the Record protocol the encryption key will be
used to protect. For example, the client and server might agree to a 128-bit key
that will be used to protect an RPC session using AES-GCM. The handshake

ALTS relies on
two protocols: the
Handshake protocol
(with session
resumption) and
the Record protocol.

11

12
13 Specifically, HKDF-Extract and HKDF-Expand as defined in RFC-5869.
14 ALTS handshaker protocol implementation concatenates ServerInit and ServerFinished messages into a single wire payload.

Figure 6: ALTS Handshake
Protocol Messages

consists of four serialized Protocol Buffer messages, an overview of which can
be seen in Figure 6.

	 1. The client initiates the handshake by sending a ClientInit message.
		 This message contains the client’s handshake certificate, and a list of
		 the handshake-related ciphers and record protocols the client supports.
		 If the client is attempting to resume a terminated session, it will include a
	 	 resumption identifier and encrypted server resumption ticket.

	 2. On receipt of the ClientInit message, the server verifies the client
		 certificate. If valid, the server chooses a handshake cipher and record
		 protocol from the list provided by the client. The server uses a combination
		 of the information contained in the ClientInit message and its own
		 local information to compute the DH exchange result. This result is used
		 as an input to Key Derivation Functions13 along with the transcript of the
		 protocol to generate the following session secrets:
			 • A record protocol secret key M used to encrypt and authenticate
			 payload messages,
			 • A resumption secret R to be used in a resumption ticket in future
			 sessions,
			 • An authenticator secret A.
		 The server sends a ServerInit message containing its certificate, the
		 chosen handshake cipher, record protocol, and an optional encrypted
		 resumption ticket.

	 3. The server sends a ServerFinished message containing a handshake
		 authenticator14. The value for this authenticator is calculated using a Hash-
		 based Message Authentication Code (HMAC) computed over a pre-defined
		 bit string and the authenticator secret A.

	 4. Once the client receives ServerInit, it verifies the server certificate,
		 computes the DH exchange result similar to the server, and derives

15 ProVerif: Cryptographic protocol verifier in the formal model.

		 the same M, R, and A secrets. The client uses the derived A to verify the
		 authenticator value in the received ServerFinished message. At
		 this point in the handshake process, the client can start using M to encrypt
		 messages. As the client is now capable of sending encrypted messages,
		 we can say that ALTS has a one RTT handshake protocol.

	 5. At the end of the handshake, the client sends a ClientFinished
		 message with a similar authenticator value (see step 3) computed over
		 a different pre-defined bit string. If needed, the client can include an
		 encrypted resumption ticket for future sessions. Once this message is
		 received and verified by the server, the ALTS handshake protocol is
		 concluded and the server can start using M to encrypt and authenticate
		 further payload messages.

The Handshake protocol was reviewed by Thai Duong from Google’s internal
security analysis team and formally verified using the Proverif tool15 by Bruno
Blanchet with the assistance of Martin Abadi.

4.2 Record Protocol

Section 4.1 described how we use the Handshake protocol to negotiate a Record
protocol secret. This protocol secret is used to encrypt and authenticate network
traffic. The layer of the stack that performs these operations is called the ALTS
Record Protocol (ALTSRP).

ALTSRP contains a suite of encryption schemes with varying key sizes and
security features. During the handshake, the client sends its list of preferred
schemes, sorted by preference. The server chooses the first protocol in
the client list that matches the server’s local configuration. This method of
scheme selection allows both clients and servers to have different encryption
preferences and allows us to phase in (or remove) encryption schemes.

4.2.1 Framing
Frames are the smallest data unit in ALTS. Depending on its size, each ALTSRP
message can consist of one or more frames. Each frame contains the following
fields:

	 • Length: a 32-bit unsigned value indicating the length of the frame, in bytes.
		 This 4-byte length field is not included as part of the total frame length.	
	 • Type: a 32-bit value specifying the frame type, e.g., data frame.
	 • Payload: the actual authenticated and optionally encrypted data being sent.

The maximum length of a frame is 1MB plus 4 length bytes. For current RPC
protocols, we further limit the frame length as shorter frames require less
memory for buffering. Larger frames could also be exploited by a potential

13

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

attacker during a Denial of Service (DoS) attack in an attempt to starve a server.
As well as limiting the frame length, we also restrict the number of frames that
can be encrypted using the same record protocol secret M. The limit varies
depending on the encryption scheme that is used to encrypt and decrypt the
frame payload. Once this limit is reached, the connection must be closed.

4.2.2 Payload
In ALTS each frame contains a payload that is integrity protected and optionally
encrypted16. As of the publication of this paper, ALTS supports the following
modes:

	 • AES-128-GCM, AES-128-VCM: AES-GCM and AES-VCM modes, respectively,
		 with 128-bit keys. These modes protect the confidentiality and integrity of
		 the payload using the GCM, and the VCM schemes17, respectively.

	 • AES-128-GMAC, AES-128-VMAC: these modes support integrity-only
		 protection using GMAC and VMAC, respectively, for tag computation. The
		 payload is transferred in plaintext with a cryptographic tag that protects
		 its integrity.

At Google, we use different modes of protection depending on the threat model
and performance requirements. If the communicating entities are within the
same physical boundary controlled by or on behalf of Google, integrity-only
protection is used. These entities can still choose to upgrade to authenticated
encryption based on the sensitivity of their data. If the communicating entities
are in different physical boundaries controlled by or on behalf of Google, and
so the communications pass over the Wide Area Network, we automatically
upgrade the security of the connection to authenticated encryption, regardless of
the chosen mode. Google applies different protections to data in transit when it
is transmitted outside a physical boundary controlled by or on behalf of Google,
since the same rigorous security measures cannot be applied.

Each frame is separately integrity protected and optionally encrypted. Both peers
maintain both request and response counters, which synchronize during normal
operation. If the server receives requests that are out of order, or repeated,
cryptographic integrity verification fails, dropping the request. Similarly, the client
drops a repeated or mis-ordered response. Furthermore, having both peers
maintain the counters (as opposed to including their values in the frame header)
saves additional bytes on the wire.

4.3 Session Resumption

ALTS allows its users to resume previous sessions without the need to perform
heavy asymmetric cryptographic operations. Session resumption is a feature
that is built into the ALTS Handshake protocol.

14

16 Payload encryption is negotiated as part of the Record protocol in the handshake.
17 The 128-bit AES-GCM scheme is based on NIST 800-38D, and AES-VCM is discussed in details in AES-VCM, An AES-GCM Construction Using an Integer-Based
Universal Hash Function.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://research.google.com/pubs/pub46483.html
https://research.google.com/pubs/pub46483.html

The ALTS handshake allows clients and servers to securely exchange (and
cache) resumption tickets which can be used to resume future connections18.
Each cached resumption ticket is indexed by a Resumption Identifier (IDR)
that is unique to all workloads running with the same identity and in the same
datacenter cell. These tickets are encrypted using symmetric keys associated
with their corresponding identifiers.

ALTS supports two types of session resumption:

	 1. Server side session resumption: a client creates and encrypts a
		 resumption ticket containing the server identity and the derived resumption
		 secret R. The resumption ticket is sent to the server at the end of the
		 handshake, in the ClientFinished message. In future sessions, the 	
		 server can choose to resume the session by sending the ticket back to
		 the client in its ServerInit message. On receipt of the ticket, the client
		 can recover both the resumption secret R and the server’s identity. The
		 client can use this information to resume the session.

		 The IDR is always associated with a identity and not with specific
		 connections. In ALTS, multiple clients can use the same identity in the
		 same datacenter. This allows clients to resume sessions with servers that
		 they may not have communicated with before, e.g. if a load balancer sends
		 the client to a different server running the same application.

	 2. Client side session resumption: at the end of a handshake the server
		 sends an encrypted resumption ticket to the client in the
		 ServerFinished message. This ticket includes the resumption
		 secret R and the client’s identity. The client can use this ticket to resume a
		 connection with any server sharing the same IDR.

When a session is resumed, the resumption secret R is used to derive new
session secrets M’, R’ and A’. M’ is used to encrypt and authenticate payload
messages, A’ is used to authenticate ServerFinished and ClientFinished
messages, and R’ is encapsulated in a new resumption ticket. Note that the
same resumption secret R is never used more than once.

5. Tradeoffs
5.1 Key Compromise Impersonation Attacks

By design, the ALTS handshake protocol is susceptible to Key Compromise
Impersonation (KCI) attacks. If an adversary compromises the DH private key,
or the resumption key, of a workload they can use the key to impersonate other
workloads to this workload19. This is explicitly in our resumption threat model, as

18 Session resumption involves lightweight symmetric operations only if ephemeral parameters are not involved.
19 Key Agreement Protocols and Their Security Analysis.
 15

The ALTS handshake
allows clients and
servers to securely
exchange resumption
tickets which can be
used to resume future
connections.

https://dl.acm.org/citation.cfm?id=742138

we want resumption tickets issued by one instance of an identity to be usable by
other instances of that identity.

There is a variant of the ALTS handshake protocol that protects against KCI
attacks, but it would only be worth using in environments where resumption is
not desired.

5.2 Privacy for Handshake Messages

ALTS is not designed to disguise which internal identities are communicating, so
it does not encrypt any handshake messages to hide the identities of the peers.

5.3 Perfect Forward Secrecy

Perfect Forward Secrecy (PFS) is supported, but not enabled by default, in ALTS.
We instead use frequent certificate rotation to establish forward secrecy for
most applications. With TLS 1.2 (and its prior versions), session resumption is
not protected with PFS. When PFS is enabled with ALTS, PFS is also enabled for
resumed sessions.

5.4 Zero-Roundtrip Resumption

TLS 1.3 provides session resumption that requires zero roundtrips (0-RTT),
however this has weaker security properties20. We decided not to include a 0-RTT
option in ALTS because RPC connections at Google are generally long-lived.
Consequently, reducing the channel setup latency was not a good tradeoff for the
additional complexity and/or reduced security that 0-RTT handshakes require.

6. Further References
For information on how Google encrypts data in transit, see our Encryption in
Transit in Google Cloud whitepaper.

For an overview of how security is designed into Google’s technical infrastructure,
see our Google Infrastructure Security Design overview.

16
20 Replay Attacks on Zero Round-Trip Time: The Case of the TLS 1.3 Handshake Candidates.

https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/encryption-in-transit
https://cloud.google.com/security/security-design/
https://eprint.iacr.org/2017/082.pdf

