Manage database connections

This page provides best practices and language-specific code samples to help you create applications that use Cloud SQL database connections effectively.

These samples are excerpts from a complete web application available to you on GitHub. Learn more.

For step-by-step instructions on running a sample web application connected to Cloud SQL, follow the link for your environment:

Connection pools

A connection pool is a cache of database connections that are shared and reused to improve connection latency and performance. When your application needs a database connection, it borrows one from its pool temporarily; when the application is finished with the connection, it returns the connection to the pool, where it can be reused the next time the application needs a database connection.

Connect with TCP

To see this snippet in the context of a web application, view the README on GitHub.

import os

import sqlalchemy


def connect_tcp_socket() -> sqlalchemy.engine.base.Engine:
    """Initializes a TCP connection pool for a Cloud SQL instance of MySQL."""
    # Note: Saving credentials in environment variables is convenient, but not
    # secure - consider a more secure solution such as
    # Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
    # keep secrets safe.
    db_host = os.environ[
        "INSTANCE_HOST"
    ]  # e.g. '127.0.0.1' ('172.17.0.1' if deployed to GAE Flex)
    db_user = os.environ["DB_USER"]  # e.g. 'my-db-user'
    db_pass = os.environ["DB_PASS"]  # e.g. 'my-db-password'
    db_name = os.environ["DB_NAME"]  # e.g. 'my-database'
    db_port = os.environ["DB_PORT"]  # e.g. 3306

    pool = sqlalchemy.create_engine(
        # Equivalent URL:
        # mysql+pymysql://<db_user>:<db_pass>@<db_host>:<db_port>/<db_name>
        sqlalchemy.engine.url.URL.create(
            drivername="mysql+pymysql",
            username=db_user,
            password=db_pass,
            host=db_host,
            port=db_port,
            database=db_name,
        ),
        # ...
    )
    return pool

To see this snippet in the context of a web application, view the README on GitHub.

Note:

  • INSTANCE_CONNECTION_NAME should be represented as <MY-PROJECT>:<INSTANCE-REGION>:<INSTANCE-NAME>
  • Using the argument ipTypes=PRIVATE will force the SocketFactory to connect with an instance's associated private IP
  • See the JDBC socket factory version requirements for the pom.xml file here .


import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import javax.sql.DataSource;

public class TcpConnectionPoolFactory extends ConnectionPoolFactory {

  // Saving credentials in environment variables is convenient, but not secure - consider a more
  // secure solution such as https://cloud.google.com/secret-manager/ to help keep secrets safe.
  private static final String DB_USER = System.getenv("DB_USER");
  private static final String DB_PASS = System.getenv("DB_PASS");
  private static final String DB_NAME = System.getenv("DB_NAME");

  private static final String INSTANCE_HOST = System.getenv("INSTANCE_HOST");
  private static final String DB_PORT = System.getenv("DB_PORT");


  public static DataSource createConnectionPool() {
    // The configuration object specifies behaviors for the connection pool.
    HikariConfig config = new HikariConfig();

    // The following URL is equivalent to setting the config options below:
    // jdbc:mysql://<INSTANCE_HOST>:<DB_PORT>/<DB_NAME>?user=<DB_USER>&password=<DB_PASS>
    // See the link below for more info on building a JDBC URL for the Cloud SQL JDBC Socket Factory
    // https://github.com/GoogleCloudPlatform/cloud-sql-jdbc-socket-factory#creating-the-jdbc-url

    // Configure which instance and what database user to connect with.
    config.setJdbcUrl(String.format("jdbc:mysql://%s:%s/%s", INSTANCE_HOST, DB_PORT, DB_NAME));
    config.setUsername(DB_USER); // e.g. "root", "mysql"
    config.setPassword(DB_PASS); // e.g. "my-password"


    // ... Specify additional connection properties here.
    // ...

    // Initialize the connection pool using the configuration object.
    return new HikariDataSource(config);
  }
}

To see this snippet in the context of a web application, view the README on GitHub.

const mysql = require('promise-mysql');
const fs = require('fs');

// createTcpPool initializes a TCP connection pool for a Cloud SQL
// instance of MySQL.
const createTcpPool = async config => {
  // Note: Saving credentials in environment variables is convenient, but not
  // secure - consider a more secure solution such as
  // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
  // keep secrets safe.
  const dbConfig = {
    host: process.env.INSTANCE_HOST, // e.g. '127.0.0.1'
    port: process.env.DB_PORT, // e.g. '3306'
    user: process.env.DB_USER, // e.g. 'my-db-user'
    password: process.env.DB_PASS, // e.g. 'my-db-password'
    database: process.env.DB_NAME, // e.g. 'my-database'
    // ... Specify additional properties here.
    ...config,
  };
  // Establish a connection to the database.
  return mysql.createPool(dbConfig);
};

To see this snippet in the context of a web application, view the README on GitHub.

package cloudsql

import (
	"crypto/tls"
	"crypto/x509"
	"database/sql"
	"errors"
	"fmt"
	"log"
	"os"

	"github.com/go-sql-driver/mysql"
)

// connectTCPSocket initializes a TCP connection pool for a Cloud SQL
// instance of MySQL.
func connectTCPSocket() (*sql.DB, error) {
	mustGetenv := func(k string) string {
		v := os.Getenv(k)
		if v == "" {
			log.Fatalf("Fatal Error in connect_tcp.go: %s environment variable not set.", k)
		}
		return v
	}
	// Note: Saving credentials in environment variables is convenient, but not
	// secure - consider a more secure solution such as
	// Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
	// keep secrets safe.
	var (
		dbUser    = mustGetenv("DB_USER")       // e.g. 'my-db-user'
		dbPwd     = mustGetenv("DB_PASS")       // e.g. 'my-db-password'
		dbName    = mustGetenv("DB_NAME")       // e.g. 'my-database'
		dbPort    = mustGetenv("DB_PORT")       // e.g. '3306'
		dbTCPHost = mustGetenv("INSTANCE_HOST") // e.g. '127.0.0.1' ('172.17.0.1' if deployed to GAE Flex)
	)

	dbURI := fmt.Sprintf("%s:%s@tcp(%s:%s)/%s?parseTime=true",
		dbUser, dbPwd, dbTCPHost, dbPort, dbName)


	// dbPool is the pool of database connections.
	dbPool, err := sql.Open("mysql", dbURI)
	if err != nil {
		return nil, fmt.Errorf("sql.Open: %w", err)
	}

	// ...

	return dbPool, nil
}

To see this snippet in the context of a web application, view the README on GitHub.

using MySql.Data.MySqlClient;
using System;

namespace CloudSql
{
    public class MySqlTcp
    {
        public static MySqlConnectionStringBuilder NewMysqlTCPConnectionString()
        {
            // Equivalent connection string:
            // "Uid=<DB_USER>;Pwd=<DB_PASS>;Host=<INSTANCE_HOST>;Database=<DB_NAME>;"
            var connectionString = new MySqlConnectionStringBuilder()
            {
                // Note: Saving credentials in environment variables is convenient, but not
                // secure - consider a more secure solution such as
                // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
                // keep secrets safe.
                Server = Environment.GetEnvironmentVariable("INSTANCE_HOST"),   // e.g. '127.0.0.1'
                // Set Host to 'cloudsql' when deploying to App Engine Flexible environment
                UserID = Environment.GetEnvironmentVariable("DB_USER"),   // e.g. 'my-db-user'
                Password = Environment.GetEnvironmentVariable("DB_PASS"), // e.g. 'my-db-password'
                Database = Environment.GetEnvironmentVariable("DB_NAME"), // e.g. 'my-database'

                // The Cloud SQL proxy provides encryption between the proxy and instance.
                SslMode = MySqlSslMode.Disabled,
            };
            connectionString.Pooling = true;
            // Specify additional properties here.
            return connectionString;

        }
    }
}

To see this snippet in the context of a web application, view the README on GitHub.

tcp: &tcp
  adapter: mysql2
  # Configure additional properties here
  # Note: Saving credentials in environment variables is convenient, but not
  # secure - consider a more secure solution such as
  # Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
  # keep secrets safe.
  username: <%= ENV["DB_USER"] %>  # e.g. "my-database-user"
  password: <%= ENV["DB_PASS"] %> # e.g. "my-database-password"
  database: <%= ENV.fetch("DB_NAME") { "vote_development" } %>
  host: "<%= ENV.fetch("INSTANCE_HOST") { "127.0.0.1" }%>" # '172.17.0.1' if deployed to GAE Flex
  port: <%= ENV.fetch("DB_PORT") { 3306 }%>

To see this snippet in the context of a web application, view the README on GitHub.

namespace Google\Cloud\Samples\CloudSQL\MySQL;

use PDO;
use PDOException;
use RuntimeException;
use TypeError;

class DatabaseTcp
{
    public static function initTcpDatabaseConnection(): PDO
    {
        try {
            // Note: Saving credentials in environment variables is convenient, but not
            // secure - consider a more secure solution such as
            // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
            // keep secrets safe.
            $username = getenv('DB_USER'); // e.g. 'your_db_user'
            $password = getenv('DB_PASS'); // e.g. 'your_db_password'
            $dbName = getenv('DB_NAME'); // e.g. 'your_db_name'
            $instanceHost = getenv('INSTANCE_HOST'); // e.g. '127.0.0.1' ('172.17.0.1' for GAE Flex)

            // Connect using TCP
            $dsn = sprintf('mysql:dbname=%s;host=%s', $dbName, $instanceHost);

            // Connect to the database
            $conn = new PDO(
                $dsn,
                $username,
                $password,
                # ...
            );
        } catch (TypeError $e) {
            throw new RuntimeException(
                sprintf(
                    'Invalid or missing configuration! Make sure you have set ' .
                        '$username, $password, $dbName, and $instanceHost (for TCP mode). ' .
                        'The PHP error was %s',
                    $e->getMessage()
                ),
                $e->getCode(),
                $e
            );
        } catch (PDOException $e) {
            throw new RuntimeException(
                sprintf(
                    'Could not connect to the Cloud SQL Database. Check that ' .
                        'your username and password are correct, that the Cloud SQL ' .
                        'proxy is running, and that the database exists and is ready ' .
                        'for use. For more assistance, refer to %s. The PDO error was %s',
                    'https://cloud.google.com/sql/docs/mysql/connect-external-app',
                    $e->getMessage()
                ),
                $e->getCode(),
                $e
            );
        }

        return $conn;
    }
}

Connect with Unix sockets

To see this snippet in the context of a web application, view the README on GitHub.

import os

import sqlalchemy


def connect_unix_socket() -> sqlalchemy.engine.base.Engine:
    """Initializes a Unix socket connection pool for a Cloud SQL instance of MySQL."""
    # Note: Saving credentials in environment variables is convenient, but not
    # secure - consider a more secure solution such as
    # Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
    # keep secrets safe.
    db_user = os.environ["DB_USER"]  # e.g. 'my-database-user'
    db_pass = os.environ["DB_PASS"]  # e.g. 'my-database-password'
    db_name = os.environ["DB_NAME"]  # e.g. 'my-database'
    unix_socket_path = os.environ[
        "INSTANCE_UNIX_SOCKET"
    ]  # e.g. '/cloudsql/project:region:instance'

    pool = sqlalchemy.create_engine(
        # Equivalent URL:
        # mysql+pymysql://<db_user>:<db_pass>@/<db_name>?unix_socket=<socket_path>/<cloud_sql_instance_name>
        sqlalchemy.engine.url.URL.create(
            drivername="mysql+pymysql",
            username=db_user,
            password=db_pass,
            database=db_name,
            query={"unix_socket": unix_socket_path},
        ),
        # ...
    )
    return pool

To see this snippet in the context of a web application, view the README on GitHub.


import com.zaxxer.hikari.HikariConfig;
import com.zaxxer.hikari.HikariDataSource;
import javax.sql.DataSource;

public class ConnectorConnectionPoolFactory extends ConnectionPoolFactory {

  // Note: Saving credentials in environment variables is convenient, but not
  // secure - consider a more secure solution such as
  // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
  // keep secrets safe.
  private static final String INSTANCE_CONNECTION_NAME =
      System.getenv("INSTANCE_CONNECTION_NAME");
  private static final String INSTANCE_UNIX_SOCKET = System.getenv("INSTANCE_UNIX_SOCKET");
  private static final String DB_USER = System.getenv("DB_USER");
  private static final String DB_PASS = System.getenv("DB_PASS");
  private static final String DB_NAME = System.getenv("DB_NAME");

  public static DataSource createConnectionPool() {
    // The configuration object specifies behaviors for the connection pool.
    HikariConfig config = new HikariConfig();

    // The following URL is equivalent to setting the config options below:
    // jdbc:mysql:///<DB_NAME>?cloudSqlInstance=<INSTANCE_CONNECTION_NAME>&
    // socketFactory=com.google.cloud.sql.mysql.SocketFactory&user=<DB_USER>&password=<DB_PASS>
    // See the link below for more info on building a JDBC URL for the Cloud SQL JDBC Socket Factory
    // https://github.com/GoogleCloudPlatform/cloud-sql-jdbc-socket-factory#creating-the-jdbc-url

    // Configure which instance and what database user to connect with.
    config.setJdbcUrl(String.format("jdbc:mysql:///%s", DB_NAME));
    config.setUsername(DB_USER); // e.g. "root", "mysql"
    config.setPassword(DB_PASS); // e.g. "my-password"

    config.addDataSourceProperty("socketFactory", "com.google.cloud.sql.mysql.SocketFactory");
    config.addDataSourceProperty("cloudSqlInstance", INSTANCE_CONNECTION_NAME);

    // Unix sockets are not natively supported in Java, so it is necessary to use the Cloud SQL
    // Java Connector to connect. When setting INSTANCE_UNIX_SOCKET, the connector will 
    // call an external package that will enable Unix socket connections.
    // Note: For Java users, the Cloud SQL Java Connector can provide authenticated connections
    // which is usually preferable to using the Cloud SQL Proxy with Unix sockets.
    // See https://github.com/GoogleCloudPlatform/cloud-sql-jdbc-socket-factory for details.
    if (INSTANCE_UNIX_SOCKET != null) {
      config.addDataSourceProperty("unixSocketPath", INSTANCE_UNIX_SOCKET);
    }


    // cloudSqlRefreshStrategy set to "lazy" is used to perform a
    // refresh when needed, rather than on a scheduled interval.
    // This is recommended for serverless environments to
    // avoid background refreshes from throttling CPU.
    config.addDataSourceProperty("cloudSqlRefreshStrategy", "lazy");

    // ... Specify additional connection properties here.
    // ...

    // Initialize the connection pool using the configuration object.
    return new HikariDataSource(config);
  }
}

To see this snippet in the context of a web application, view the README on GitHub.

const mysql = require('promise-mysql');

// createUnixSocketPool initializes a Unix socket connection pool for
// a Cloud SQL instance of MySQL.
const createUnixSocketPool = async config => {
  // Note: Saving credentials in environment variables is convenient, but not
  // secure - consider a more secure solution such as
  // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
  // keep secrets safe.
  return mysql.createPool({
    user: process.env.DB_USER, // e.g. 'my-db-user'
    password: process.env.DB_PASS, // e.g. 'my-db-password'
    database: process.env.DB_NAME, // e.g. 'my-database'
    socketPath: process.env.INSTANCE_UNIX_SOCKET, // e.g. '/cloudsql/project:region:instance'
    // Specify additional properties here.
    ...config,
  });
};

To see this snippet in the context of a web application, view the README on GitHub.

using MySql.Data.MySqlClient;
using System;

namespace CloudSql
{
    public class MySqlUnix
    {
        public static MySqlConnectionStringBuilder NewMysqlUnixSocketConnectionString()
        {
            // Equivalent connection string:
            // "Server=<INSTANCE_UNIX_SOCKET>;Uid=<DB_USER>;Pwd=<DB_PASS>;Database=<DB_NAME>;Protocol=unix"
            var connectionString = new MySqlConnectionStringBuilder()
            {
                // The Cloud SQL proxy provides encryption between the proxy and instance.
                SslMode = MySqlSslMode.Disabled,

                // Note: Saving credentials in environment variables is convenient, but not
                // secure - consider a more secure solution such as
                // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
                // keep secrets safe.
                Server = Environment.GetEnvironmentVariable("INSTANCE_UNIX_SOCKET"), // e.g. '/cloudsql/project:region:instance'
                UserID = Environment.GetEnvironmentVariable("DB_USER"),   // e.g. 'my-db-user
                Password = Environment.GetEnvironmentVariable("DB_PASS"), // e.g. 'my-db-password'
                Database = Environment.GetEnvironmentVariable("DB_NAME"), // e.g. 'my-database'
                ConnectionProtocol = MySqlConnectionProtocol.UnixSocket
            };
            connectionString.Pooling = true;
            // Specify additional properties here.
            return connectionString;
        }
    }
}

To see this snippet in the context of a web application, view the README on GitHub.

package cloudsql

import (
	"database/sql"
	"fmt"
	"log"
	"os"

	_ "github.com/go-sql-driver/mysql"
)

// connectUnixSocket initializes a Unix socket connection pool for
// a Cloud SQL instance of MySQL.
func connectUnixSocket() (*sql.DB, error) {
	mustGetenv := func(k string) string {
		v := os.Getenv(k)
		if v == "" {
			log.Fatalf("Fatal Error in connect_unix.go: %s environment variable not set.", k)
		}
		return v
	}
	// Note: Saving credentials in environment variables is convenient, but not
	// secure - consider a more secure solution such as
	// Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
	// keep secrets safe.
	var (
		dbUser         = mustGetenv("DB_USER")              // e.g. 'my-db-user'
		dbPwd          = mustGetenv("DB_PASS")              // e.g. 'my-db-password'
		dbName         = mustGetenv("DB_NAME")              // e.g. 'my-database'
		unixSocketPath = mustGetenv("INSTANCE_UNIX_SOCKET") // e.g. '/cloudsql/project:region:instance'
	)

	dbURI := fmt.Sprintf("%s:%s@unix(%s)/%s?parseTime=true",
		dbUser, dbPwd, unixSocketPath, dbName)

	// dbPool is the pool of database connections.
	dbPool, err := sql.Open("mysql", dbURI)
	if err != nil {
		return nil, fmt.Errorf("sql.Open: %w", err)
	}

	// ...

	return dbPool, nil
}

To see this snippet in the context of a web application, view the README on GitHub.

unix: &unix
  adapter: mysql2
  # Configure additional properties here.
  # Note: Saving credentials in environment variables is convenient, but not
  # secure - consider a more secure solution such as
  # Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
  # keep secrets safe.
  username: <%= ENV["DB_USER"] %>  # e.g. "my-database-user"
  password: <%= ENV["DB_PASS"] %> # e.g. "my-database-password"
  database: <%= ENV.fetch("DB_NAME") { "vote_development" } %>
  # Specify the Unix socket path as host
  socket: "<%= ENV["INSTANCE_UNIX_SOCKET"] %>"

To see this snippet in the context of a web application, view the README on GitHub.

namespace Google\Cloud\Samples\CloudSQL\MySQL;

use PDO;
use PDOException;
use RuntimeException;
use TypeError;

class DatabaseUnix
{
    public static function initUnixDatabaseConnection(): PDO
    {
        try {
            // Note: Saving credentials in environment variables is convenient, but not
            // secure - consider a more secure solution such as
            // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
            // keep secrets safe.
            $username = getenv('DB_USER'); // e.g. 'your_db_user'
            $password = getenv('DB_PASS'); // e.g. 'your_db_password'
            $dbName = getenv('DB_NAME'); // e.g. 'your_db_name'
            $instanceUnixSocket = getenv('INSTANCE_UNIX_SOCKET'); // e.g. '/cloudsql/project:region:instance'

            // Connect using UNIX sockets
            $dsn = sprintf(
                'mysql:dbname=%s;unix_socket=%s',
                $dbName,
                $instanceUnixSocket
            );

            // Connect to the database.
            $conn = new PDO(
                $dsn,
                $username,
                $password,
                # ...
            );
        } catch (TypeError $e) {
            throw new RuntimeException(
                sprintf(
                    'Invalid or missing configuration! Make sure you have set ' .
                        '$username, $password, $dbName, ' .
                        'and $instanceUnixSocket (for UNIX socket mode). ' .
                        'The PHP error was %s',
                    $e->getMessage()
                ),
                (int) $e->getCode(),
                $e
            );
        } catch (PDOException $e) {
            throw new RuntimeException(
                sprintf(
                    'Could not connect to the Cloud SQL Database. Check that ' .
                        'your username and password are correct, that the Cloud SQL ' .
                        'proxy is running, and that the database exists and is ready ' .
                        'for use. For more assistance, refer to %s. The PDO error was %s',
                    'https://cloud.google.com/sql/docs/mysql/connect-external-app',
                    $e->getMessage()
                ),
                (int) $e->getCode(),
                $e
            );
        }

        return $conn;
    }
}

Open and close connections

When you use a connection pool, you must open and close connections properly, so that your connections are always returned to the pool when you are done with them. Unreturned or "leaked" connections are not reused, which wastes resources and can cause performance bottlenecks for your application.

# Preparing a statement before hand can help protect against injections.
stmt = sqlalchemy.text(
    "INSERT INTO votes (time_cast, candidate) VALUES (:time_cast, :candidate)"
)
try:
    # Using a with statement ensures that the connection is always released
    # back into the pool at the end of statement (even if an error occurs)
    with db.connect() as conn:
        conn.execute(stmt, parameters={"time_cast": time_cast, "candidate": team})
        conn.commit()
except Exception as e:
    # If something goes wrong, handle the error in this section. This might
    # involve retrying or adjusting parameters depending on the situation.
    # ...
// Using a try-with-resources statement ensures that the connection is always released back
// into the pool at the end of the statement (even if an error occurs)
try (Connection conn = pool.getConnection()) {

  // PreparedStatements can be more efficient and project against injections.
  String stmt = "INSERT INTO votes (time_cast, candidate) VALUES (?, ?);";
  try (PreparedStatement voteStmt = conn.prepareStatement(stmt);) {
    voteStmt.setTimestamp(1, now);
    voteStmt.setString(2, team);

    // Finally, execute the statement. If it fails, an error will be thrown.
    voteStmt.execute();
  }
} catch (SQLException ex) {
  // If something goes wrong, handle the error in this section. This might involve retrying or
  // adjusting parameters depending on the situation.
  // ...
}
try {
  const stmt = 'INSERT INTO votes (time_cast, candidate) VALUES (?, ?)';
  // Pool.query automatically checks out, uses, and releases a connection
  // back into the pool, ensuring it is always returned successfully.
  await pool.query(stmt, [timestamp, team]);
} catch (err) {
  // If something goes wrong, handle the error in this section. This might
  // involve retrying or adjusting parameters depending on the situation.
  // ...
}
using MySql.Data.MySqlClient;
using System;

namespace CloudSql
{
    public class MySqlTcp
    {
        public static MySqlConnectionStringBuilder NewMysqlTCPConnectionString()
        {
            // Equivalent connection string:
            // "Uid=<DB_USER>;Pwd=<DB_PASS>;Host=<INSTANCE_HOST>;Database=<DB_NAME>;"
            var connectionString = new MySqlConnectionStringBuilder()
            {
                // Note: Saving credentials in environment variables is convenient, but not
                // secure - consider a more secure solution such as
                // Cloud Secret Manager (https://cloud.google.com/secret-manager) to help
                // keep secrets safe.
                Server = Environment.GetEnvironmentVariable("INSTANCE_HOST"),   // e.g. '127.0.0.1'
                // Set Host to 'cloudsql' when deploying to App Engine Flexible environment
                UserID = Environment.GetEnvironmentVariable("DB_USER"),   // e.g. 'my-db-user'
                Password = Environment.GetEnvironmentVariable("DB_PASS"), // e.g. 'my-db-password'
                Database = Environment.GetEnvironmentVariable("DB_NAME"), // e.g. 'my-database'

                // The Cloud SQL proxy provides encryption between the proxy and instance.
                SslMode = MySqlSslMode.Disabled,
            };
            connectionString.Pooling = true;
            // Specify additional properties here.
            return connectionString;

        }
    }
}
insertVote := "INSERT INTO votes(candidate, created_at) VALUES(?, NOW())"
_, err := db.Exec(insertVote, team)
@vote = Vote.new candidate: candidate

# ActiveRecord creates and executes your SQL and automatically
# handles the opening and closing of the database connection.
if @vote.save
  render json: "Vote successfully cast for \"#{@vote.candidate}\" at #{@vote.time_cast} PST!"
else
  render json: @vote.errors, status: :unprocessable_entity
end
// Use prepared statements to guard against SQL injection.
$sql = 'INSERT INTO votes (time_cast, candidate) VALUES (NOW(), :voteValue)';

try {
    $statement = $conn->prepare($sql);
    $statement->bindParam('voteValue', $value);

    $res = $statement->execute();
} catch (PDOException $e) {
    throw new RuntimeException(
        'Could not insert vote into database. The PDO exception was ' .
        $e->getMessage(),
        $e->getCode(),
        $e
    );
}

Connection count

Every database connection uses client and server-side resources. In addition, Cloud SQL imposes overall connection limits that cannot be exceeded. Creating and using fewer connections reduces overhead and helps you stay under the connection limit.

# Pool size is the maximum number of permanent connections to keep.
pool_size=5,
# Temporarily exceeds the set pool_size if no connections are available.
max_overflow=2,
# The total number of concurrent connections for your application will be
# a total of pool_size and max_overflow.
// maximumPoolSize limits the total number of concurrent connections this pool will keep. Ideal
// values for this setting are highly variable on app design, infrastructure, and database.
config.setMaximumPoolSize(5);
// minimumIdle is the minimum number of idle connections Hikari maintains in the pool.
// Additional connections will be established to meet this value unless the pool is full.
config.setMinimumIdle(5);
// 'connectionLimit' is the maximum number of connections the pool is allowed
// to keep at once.
connectionLimit: 5,
// MaximumPoolSize sets maximum number of connections allowed in the pool.
connectionString.MaximumPoolSize = 5;
// MinimumPoolSize sets the minimum number of connections in the pool.
connectionString.MinimumPoolSize = 0;
// Set maximum number of connections in idle connection pool.
db.SetMaxIdleConns(5)

// Set maximum number of open connections to the database.
db.SetMaxOpenConns(7)
# 'pool' is the maximum number of permanent connections to keep.
pool: 5

PDO currently doesn't offer any functionality to configure connection limits.

Exponential backoff

If your application attempts to connect to the database and does not succeed, the database could be temporarily unavailable. In this case, sending repeated connection requests wastes resources. It is preferable to wait before sending additional connection requests in order to allow the database to become accessible again. Using an exponential backoff or other delay mechanism achieves this goal.

This retry only makes sense when first connecting, or when first grabbing a connection from the pool. If errors happen in the middle of a transaction, the application must do the retrying, and it must retry from the beginning of a transaction. So even if your pool is configured properly, the application might still see errors if connections are lost.

# SQLAlchemy automatically uses delays between failed connection attempts,
# but provides no arguments for configuration.
// Hikari automatically delays between failed connection attempts, eventually reaching a
// maximum delay of `connectionTimeout / 2` between attempts.
// The mysql module automatically uses exponential delays between failed
// connection attempts.
Policy
    .Handle<MySqlException>()
    .WaitAndRetry(new[]
    {
        TimeSpan.FromSeconds(1),
        TimeSpan.FromSeconds(2),
        TimeSpan.FromSeconds(5)
    })
    .Execute(() => connection.Open());

The database/sql package currently doesn't offer any functionality to configure exponential backoff.

# ActiveRecord automatically uses delays between failed connection attempts,
# but provides no arguments for configuration.

PDO currently doesn't offer any functionality to configure exponential backoff.

Connection timeout

There are many reasons why a connection attempt might not succeed. Network communication is never guaranteed, and the database might be temporarily unable to respond. Make sure your application handles broken or unsuccessful connections gracefully.

# 'pool_timeout' is the maximum number of seconds to wait when retrieving a
# new connection from the pool. After the specified amount of time, an
# exception will be thrown.
pool_timeout=30,  # 30 seconds
// setConnectionTimeout is the maximum number of milliseconds to wait for a connection checkout.
// Any attempt to retrieve a connection from this pool that exceeds the set limit will throw an
// SQLException.
config.setConnectionTimeout(10000); // 10 seconds
// idleTimeout is the maximum amount of time a connection can sit in the pool. Connections that
// sit idle for this many milliseconds are retried if minimumIdle is exceeded.
config.setIdleTimeout(600000); // 10 minutes
// 'connectTimeout' is the maximum number of milliseconds before a timeout
// occurs during the initial connection to the database.
connectTimeout: 10000, // 10 seconds
// 'acquireTimeout' is the maximum number of milliseconds to wait when
// checking out a connection from the pool before a timeout error occurs.
acquireTimeout: 10000, // 10 seconds
// 'waitForConnections' determines the pool's action when no connections are
// free. If true, the request will queued and a connection will be presented
// when ready. If false, the pool will call back with an error.
waitForConnections: true, // Default: true
// 'queueLimit' is the maximum number of requests for connections the pool
// will queue at once before returning an error. If 0, there is no limit.
queueLimit: 0, // Default: 0
// ConnectionTimeout sets the time to wait (in seconds) while
// trying to establish a connection before terminating the attempt.
connectionString.ConnectionTimeout = 15;

The database/sql package currently doesn't offer any functionality to configure connection timeout. Timeout is configured at the driver level.

# 'timeout' is the maximum number of seconds to wait when retrieving a
# new connection from the pool. After the specified amount of time, an
# ActiveRecord::ConnectionTimeoutError will be raised.
timeout: 5000
// Here we set the connection timeout to five seconds and ask PDO to
// throw an exception if any errors occur.
[
    PDO::ATTR_TIMEOUT => 5,
    PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,
]

End a connection

Users with the PROCESS privilege in Cloud SQL can list connections that they don't manage. In MySQL 5.7.x, users must have the SUPER privilege and in MySQL 8.0.x, users must have the CONNECTION_ADMIN privilege to execute a KILL statement on these connections. The KILL statement terminates the connection of any other mysql user (except Cloud SQL administrative users). Users without these privileges can only list and terminate connections that they manage.

You can list the connections to an instance using the mysql client and executing the SHOW PROCESSLIST command. Use the Id to end the connection. For example:

mysql> SHOW PROCESSLIST;
mysql> KILL 6;

Connection duration

Limiting a connection's lifetime can help prevent abandoned connections from accumulating. You can use the connection pool to limit your connection lifetimes.

# 'pool_recycle' is the maximum number of seconds a connection can persist.
# Connections that live longer than the specified amount of time will be
# re-established
pool_recycle=1800,  # 30 minutes
// maxLifetime is the maximum possible lifetime of a connection in the pool. Connections that
// live longer than this many milliseconds will be closed and reestablished between uses. This
// value should be several minutes shorter than the database's timeout value to avoid unexpected
// terminations.
config.setMaxLifetime(1800000); // 30 minutes

The 'mysql' Node.js library currently doesn't offer any functionality to control the duration of a connection.

// ConnectionLifeTime sets the lifetime of a pooled connection
// (in seconds) that a connection lives before it is destroyed
// and recreated. Connections that are returned to the pool are
// destroyed if it's been more than the number of seconds
// specified by ConnectionLifeTime since the connection was
// created. The default value is zero (0) which means the
// connection always returns to pool.
connectionString.ConnectionLifeTime = 1800; // 30 minutes
// Set Maximum time (in seconds) that a connection can remain open.
db.SetConnMaxLifetime(1800 * time.Second)

ActiveRecord currently doesn't offer any functionality to control the duration of a connection.

PDO currently doesn't offer any functionality to control the duration of a connection.

To see the complete application, click the link below.

View the complete application for the Python programming language.

View the complete application for the Java programming language.

View the complete application for the Node.js programming language.

View the complete application for the C# programming language.

View the complete application for the Go programming language.

View the complete application for the Ruby programming language.

View the complete application for the PHP programming language.

What's next