Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
In diesem Abschnitt wird gezeigt, wie Sie Streamingaudio, das z. B. mit einem Mikrofon aufgenommen wurde, in Text transkribieren können.
Mit einer Streamingspracherkennung können Sie Audiodaten zu Speech-to-Text streamen. Sie erhalten dann bei der Verarbeitung dieser Audiodaten die Ergebnisse der Streamingspracherkennung in Echtzeit. Weitere Informationen zu Anfragen für die Streamingspracherkennung finden Sie unter Audiobeschränkungen.
Die Streamingspracherkennung ist nur über gRPC verfügbar.
Streamingspracherkennung für eine lokale Datei ausführen
Im Folgenden finden Sie ein Beispiel für eine Streamingspracherkennung für eine lokale Audiodatei. Für alle an die API gesendeten Streaminganfragen gilt eine Begrenzung von 10 MB. Dieses Limit gilt sowohl für die erste StreamingRecognize-Anfrage als auch für die Größe jeder einzelnen Nachricht im Stream. Ein Überschreiten des Limits führt zu einem Fehler.
/**
* Performs streaming speech recognition on raw PCM audio data.
*
* @param fileName the path to a PCM audio file to transcribe.
*/
public static void streamingRecognizeFile(String fileName) throws Exception, IOException {
Path path = Paths.get(fileName);
byte[] data = Files.readAllBytes(path);
// Instantiates a client with GOOGLE_APPLICATION_CREDENTIALS
try (SpeechClient speech = SpeechClient.create()) {
// Configure request with local raw PCM audio
RecognitionConfig recConfig =
RecognitionConfig.newBuilder()
.setEncoding(AudioEncoding.LINEAR16)
.setLanguageCode("en-US")
.setSampleRateHertz(16000)
.setModel("default")
.build();
StreamingRecognitionConfig config =
StreamingRecognitionConfig.newBuilder().setConfig(recConfig).build();
class ResponseApiStreamingObserver<T> implements ApiStreamObserver<T> {
private final SettableFuture<List<T>> future = SettableFuture.create();
private final List<T> messages = new java.util.ArrayList<T>();
@Override
public void onNext(T message) {
messages.add(message);
}
@Override
public void onError(Throwable t) {
future.setException(t);
}
@Override
public void onCompleted() {
future.set(messages);
}
// Returns the SettableFuture object to get received messages / exceptions.
public SettableFuture<List<T>> future() {
return future;
}
}
ResponseApiStreamingObserver<StreamingRecognizeResponse> responseObserver =
new ResponseApiStreamingObserver<>();
BidiStreamingCallable<StreamingRecognizeRequest, StreamingRecognizeResponse> callable =
speech.streamingRecognizeCallable();
ApiStreamObserver<StreamingRecognizeRequest> requestObserver =
callable.bidiStreamingCall(responseObserver);
// The first request must **only** contain the audio configuration:
requestObserver.onNext(
StreamingRecognizeRequest.newBuilder().setStreamingConfig(config).build());
// Subsequent requests must **only** contain the audio data.
requestObserver.onNext(
StreamingRecognizeRequest.newBuilder()
.setAudioContent(ByteString.copyFrom(data))
.build());
// Mark transmission as completed after sending the data.
requestObserver.onCompleted();
List<StreamingRecognizeResponse> responses = responseObserver.future().get();
for (StreamingRecognizeResponse response : responses) {
// For streaming recognize, the results list has one is_final result (if available) followed
// by a number of in-progress results (if iterim_results is true) for subsequent utterances.
// Just print the first result here.
StreamingRecognitionResult result = response.getResultsList().get(0);
// There can be several alternative transcripts for a given chunk of speech. Just use the
// first (most likely) one here.
SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
System.out.printf("Transcript : %s\n", alternative.getTranscript());
}
}
}
const fs = require('fs');
// Imports the Google Cloud client library
const speech = require('@google-cloud/speech');
// Creates a client
const client = new speech.SpeechClient();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';
const request = {
config: {
encoding: encoding,
sampleRateHertz: sampleRateHertz,
languageCode: languageCode,
},
interimResults: false, // If you want interim results, set this to true
};
// Stream the audio to the Google Cloud Speech API
const recognizeStream = client
.streamingRecognize(request)
.on('error', console.error)
.on('data', data => {
console.log(
`Transcription: ${data.results[0].alternatives[0].transcript}`
);
});
// Stream an audio file from disk to the Speech API, e.g. "./resources/audio.raw"
fs.createReadStream(filename).pipe(recognizeStream);
def transcribe_streaming(stream_file):
"""Streams transcription of the given audio file."""
import io
from google.cloud import speech
client = speech.SpeechClient()
with io.open(stream_file, "rb") as audio_file:
content = audio_file.read()
# In practice, stream should be a generator yielding chunks of audio data.
stream = [content]
requests = (
speech.StreamingRecognizeRequest(audio_content=chunk) for chunk in stream
)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
)
streaming_config = speech.StreamingRecognitionConfig(config=config)
# streaming_recognize returns a generator.
responses = client.streaming_recognize(
config=streaming_config,
requests=requests,
)
for response in responses:
# Once the transcription has settled, the first result will contain the
# is_final result. The other results will be for subsequent portions of
# the audio.
for result in response.results:
print("Finished: {}".format(result.is_final))
print("Stability: {}".format(result.stability))
alternatives = result.alternatives
# The alternatives are ordered from most likely to least.
for alternative in alternatives:
print("Confidence: {}".format(alternative.confidence))
print(u"Transcript: {}".format(alternative.transcript))
Sie können zwar eine lokale Audiodatei an die Speech-to-Text API streamen, für Ergebnisse im Batchmodus wird allerdings die synchrone oder asynchrone Audioerkennung empfohlen.
Streamingspracherkennung für einen Audiostream ausführen
Speech-to-Text kann die Erkennung auch beim Streaming von Audiodaten in Echtzeit durchführen.
Hier ist ein Beispiel für die Durchführung der Streamingspracherkennung für einen Audiostream, der von einem Mikrofon empfangen wird:
from __future__ import division
import re
import sys
from google.cloud import speech
import pyaudio
from six.moves import queue
# Audio recording parameters
RATE = 16000
CHUNK = int(RATE / 10) # 100ms
class MicrophoneStream(object):
"""Opens a recording stream as a generator yielding the audio chunks."""
def __init__(self, rate, chunk):
self._rate = rate
self._chunk = chunk
# Create a thread-safe buffer of audio data
self._buff = queue.Queue()
self.closed = True
def __enter__(self):
self._audio_interface = pyaudio.PyAudio()
self._audio_stream = self._audio_interface.open(
format=pyaudio.paInt16,
# The API currently only supports 1-channel (mono) audio
# https://goo.gl/z757pE
channels=1,
rate=self._rate,
input=True,
frames_per_buffer=self._chunk,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback=self._fill_buffer,
)
self.closed = False
return self
def __exit__(self, type, value, traceback):
self._audio_stream.stop_stream()
self._audio_stream.close()
self.closed = True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self._buff.put(None)
self._audio_interface.terminate()
def _fill_buffer(self, in_data, frame_count, time_info, status_flags):
"""Continuously collect data from the audio stream, into the buffer."""
self._buff.put(in_data)
return None, pyaudio.paContinue
def generator(self):
while not self.closed:
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk = self._buff.get()
if chunk is None:
return
data = [chunk]
# Now consume whatever other data's still buffered.
while True:
try:
chunk = self._buff.get(block=False)
if chunk is None:
return
data.append(chunk)
except queue.Empty:
break
yield b"".join(data)
def listen_print_loop(responses):
"""Iterates through server responses and prints them.
The responses passed is a generator that will block until a response
is provided by the server.
Each response may contain multiple results, and each result may contain
multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we
print only the transcription for the top alternative of the top result.
In this case, responses are provided for interim results as well. If the
response is an interim one, print a line feed at the end of it, to allow
the next result to overwrite it, until the response is a final one. For the
final one, print a newline to preserve the finalized transcription.
"""
num_chars_printed = 0
for response in responses:
if not response.results:
continue
# The `results` list is consecutive. For streaming, we only care about
# the first result being considered, since once it's `is_final`, it
# moves on to considering the next utterance.
result = response.results[0]
if not result.alternatives:
continue
# Display the transcription of the top alternative.
transcript = result.alternatives[0].transcript
# Display interim results, but with a carriage return at the end of the
# line, so subsequent lines will overwrite them.
#
# If the previous result was longer than this one, we need to print
# some extra spaces to overwrite the previous result
overwrite_chars = " " * (num_chars_printed - len(transcript))
if not result.is_final:
sys.stdout.write(transcript + overwrite_chars + "\r")
sys.stdout.flush()
num_chars_printed = len(transcript)
else:
print(transcript + overwrite_chars)
# Exit recognition if any of the transcribed phrases could be
# one of our keywords.
if re.search(r"\b(exit|quit)\b", transcript, re.I):
print("Exiting..")
break
num_chars_printed = 0
def main():
# See http://g.co/cloud/speech/docs/languages
# for a list of supported languages.
language_code = "en-US" # a BCP-47 language tag
client = speech.SpeechClient()
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=RATE,
language_code=language_code,
)
streaming_config = speech.StreamingRecognitionConfig(
config=config, interim_results=True
)
with MicrophoneStream(RATE, CHUNK) as stream:
audio_generator = stream.generator()
requests = (
speech.StreamingRecognizeRequest(audio_content=content)
for content in audio_generator
)
responses = client.streaming_recognize(streaming_config, requests)
# Now, put the transcription responses to use.
listen_print_loop(responses)
if __name__ == "__main__":
main()
Wenn Sie mit Google Cloud noch nicht vertraut sind, erstellen Sie einfach ein Konto, um die Leistungsfähigkeit von Speech-to-Text in der Praxis sehen und bewerten zu können. Neukunden erhalten außerdem ein Guthaben von 300 $, um Arbeitslasten auszuführen, zu testen und bereitzustellen.