拡張モデルによる電話音声の文字変換

このチュートリアルでは、電話で録音した音声を Cloud Speech-to-Text で文字変換する方法について説明します。

音声ファイルのソースはさまざまです。電話で録音した音声(ボイスメールなど)の場合もあれば、動画ファイルのサウンドトラックの場合もあります。

Speech-to-Text は、複数の機械学習モデルのいずれかを使用して、音源に最も適合するように、音声ファイルの文字変換を行います。音声文字変換の結果を良くするため、音声データの音源を指定することもできます。音源を指定すると、Speech-to-Text は音声ファイルと類似したデータでトレーニングされた機械学習モデルを使用して音声ファイルを処理します。

目標

  • 電話で録音した音声(ボイスメールなど)の文字変換リクエストを Speech-to-Text に送信する。
  • 音声文字変換リクエストで拡張音声認識モデルを指定する。

料金

このチュートリアルでは、以下を含む、Cloud Platform の有料コンポーネントを使用します。

  • Cloud Speech-to-Text

料金計算ツールを使うと、予想使用量に基づいて費用の見積もりを出すことができます。 Cloud Platform を初めて使用する方は、無料トライアルをご利用いただけます。

始める前に

このチュートリアルでは次の事前準備が必要です。

リクエストを送信する

通話やボイスメールなど、電話でキャプチャした音声の文字変換で最高の品質を得るには、RecognitionConfig ペイロードの model フィールドを phone_model に設定します。model フィールドにより、音声文字変換リクエストに使用する音声認識モデルを Speech-to-Text API に指示します。

拡張モデルを使用すると、電話の音声の変換結果を向上させることができます。拡張モデルを使用する場合は、RecognitionConfig ペイロードで useEnhanced フィールドを true に設定します。

次のサンプルコードは、Speech-to-Text の呼び出しで特定の音声文字変換モデルを選択する方法を示しています。

プロトコル

詳細については、speech:recognizeAPI エンドポイントをご覧ください。

同期音声認識を実行するには、POST リクエストを作成し、適切なリクエスト本文を指定します。次は、curl を使用した POST リクエストの例です。この例では、Google Cloud Platform Cloud SDK を使ってプロジェクトに設定されたサービス アカウントのアクセス トークンを使用しています。Cloud SDK のインストール、サービス アカウントを使用したプロジェクトの設定、アクセス トークンの取得については、クイックスタートをご覧ください。

curl -s -H "Content-Type: application/json" \
    -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
    https://speech.googleapis.com/v1/speech:recognize \
    --data "{
  'config': {
    'encoding': 'LINEAR16',
    'languageCode': 'en-US',
    'enableWordTimeOffsets': false,
    'enableAutomaticPunctuation': true,
    'model': 'phone_call',
    'useEnhanced': true
  },
  'audio': {
    'uri':'gs://cloud-samples-tests/speech/commercial_mono.wav'
  }
}"

リクエスト本文の構成方法については、RecognitionConfigリファレンス ドキュメントをご覧ください。

リクエストが成功すると、サーバーは 200 OK HTTP ステータス コードと JSON 形式のレスポンスを返します。

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "Hi, I'd like to buy a Chromecast. I was wondering whether you could help me with that.",
          "confidence": 0.8930228
        }
      ],
      "resultEndTime": "5.640s"
    },
    {
      "alternatives": [
        {
          "transcript": " Certainly, which color would you like? We are blue black and red.",
          "confidence": 0.9101991
        }
      ],
      "resultEndTime": "10.220s"
    },
    {
      "alternatives": [
        {
          "transcript": " Let's go with the black one.",
          "confidence": 0.8818244
        }
      ],
      "resultEndTime": "13.870s"
    },
    {
      "alternatives": [
        {
          "transcript": " Would you like the new Chromecast Ultra model or the regular Chromecast?",
          "confidence": 0.94733626
        }
      ],
      "resultEndTime": "18.460s"
    },
    {
      "alternatives": [
        {
          "transcript": " Regular Chromecast is fine. Thank you. Okay. Sure. Would you like to ship it regular or Express?",
          "confidence": 0.9519095
        }
      ],
      "resultEndTime": "25.930s"
    },
    {
      "alternatives": [
        {
          "transcript": " Express, please.",
          "confidence": 0.9101229
        }
      ],
      "resultEndTime": "28.260s"
    },
    {
      "alternatives": [
        {
          "transcript": " Terrific. It's on the way. Thank you. Thank you very much. Bye.",
          "confidence": 0.9321616
        }
      ],
      "resultEndTime": "34.150s"
    }
 ]
}

C#

static object SyncRecognizeEnhancedModel(string filePath)
{
    var speech = SpeechClient.Create();
    var response = speech.Recognize(new RecognitionConfig()
    {
        Encoding = RecognitionConfig.Types.AudioEncoding.Linear16,
        SampleRateHertz = 8000,
        LanguageCode = "en-US",
        // Enhanced models are only available for projects that
        // opt into audio data logging.
        UseEnhanced = true,
        // A model must be specified to use an enhanced model.
        Model = "phone_call",
    }, RecognitionAudio.FromFile(filePath));
    foreach (var result in response.Results)
    {
        foreach (var alternative in result.Alternatives)
        {
            Console.WriteLine(alternative.Transcript);
        }
    }
    return 0;
}

Go

func enhancedModel(w io.Writer, path string) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}

	// path = "../testdata/commercial_mono.wav"
	data, err := ioutil.ReadFile(path)
	if err != nil {
		return fmt.Errorf("ReadFile: %v", err)
	}

	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 8000,
			LanguageCode:    "en-US",
			// Enhanced models are only available to projects that
			// opt in for audio data collection.
			UseEnhanced: true,
			// A model must be specified to use enhanced model.
			Model: "phone_call",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Content{Content: data},
		},
	})
	if err != nil {
		return fmt.Errorf("Recognize: %v", err)
	}

	for i, result := range resp.Results {
		fmt.Fprintf(w, "%s\n", strings.Repeat("-", 20))
		fmt.Fprintf(w, "Result %d\n", i+1)
		for j, alternative := range result.Alternatives {
			fmt.Fprintf(w, "Alternative %d: %s\n", j+1, alternative.Transcript)
		}
	}
	return nil
}

Java

/**
 * Performs transcription of the given audio file synchronously with the selected model.
 *
 * @param fileName the path to a audio file to transcribe
 */
public static void transcribeModelSelection(String fileName) throws Exception {
  Path path = Paths.get(fileName);
  byte[] content = Files.readAllBytes(path);

  try (SpeechClient speech = SpeechClient.create()) {
    // Configure request with video media type
    RecognitionConfig recConfig =
        RecognitionConfig.newBuilder()
            // encoding may either be omitted or must match the value in the file header
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            // sample rate hertz may be either be omitted or must match the value in the file
            // header
            .setSampleRateHertz(16000)
            .setModel("video")
            .build();

    RecognitionAudio recognitionAudio =
        RecognitionAudio.newBuilder().setContent(ByteString.copyFrom(content)).build();

    RecognizeResponse recognizeResponse = speech.recognize(recConfig, recognitionAudio);
    // Just print the first result here.
    SpeechRecognitionResult result = recognizeResponse.getResultsList().get(0);
    // There can be several alternative transcripts for a given chunk of speech. Just use the
    // first (most likely) one here.
    SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
    System.out.printf("Transcript : %s\n", alternative.getTranscript());
  }
}

Node.js

// Imports the Google Cloud client library for Beta API
/**
 * TODO(developer): Update client library import to use new
 * version of API when desired features become available
 */
const speech = require('@google-cloud/speech').v1p1beta1;
const fs = require('fs');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const model = 'Model to use, e.g. phone_call, video, default';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  sampleRateHertz: sampleRateHertz,
  languageCode: languageCode,
  model: model,
};
const audio = {
  content: fs.readFileSync(filename).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file
const [response] = await client.recognize(request);
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log(`Transcription: `, transcription);

Python

def transcribe_model_selection(speech_file, model):
    """Transcribe the given audio file synchronously with
    the selected model."""
    from google.cloud import speech
    client = speech.SpeechClient()

    with open(speech_file, 'rb') as audio_file:
        content = audio_file.read()

    audio = speech.types.RecognitionAudio(content=content)

    config = speech.types.RecognitionConfig(
        encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
        sample_rate_hertz=16000,
        language_code='en-US',
        model=model)

    response = client.recognize(config, audio)

    for i, result in enumerate(response.results):
        alternative = result.alternatives[0]
        print('-' * 20)
        print('First alternative of result {}'.format(i))
        print(u'Transcript: {}'.format(alternative.transcript))

クリーンアップ

このチュートリアルで使用するリソースについて、Google Cloud Platform アカウントに課金されないようにする手順は次のとおりです。

プロジェクトの削除

課金を停止する最も簡単な方法は、チュートリアル用に作成したプロジェクトを削除することです。

プロジェクトを削除するには:

  1. GCP Console で [プロジェクト] ページに移動します。

    プロジェクト ページに移動

  2. プロジェクト リストで、削除するプロジェクトを選択し、[削除] をクリックします。
  3. ダイアログでプロジェクト ID を入力し、[シャットダウン] をクリックしてプロジェクトを削除します。

インスタンスの削除

Compute Engine インスタンスを削除するには:

  1. GCP Console の [VM インスタンス] ページに移動します。

    [VM インスタンス] ページに移動

  2. 次のチェックボックスをオンにします。 削除するインスタンス。
  3. インスタンスを削除するには、[削除] () をクリックします。

デフォルトのネットワークのファイアウォール ルールの削除

ファイアウォール ルールを削除するには:

  1. GCP Console で、[ファイアウォール ルール] ページに移動します。

    [ファイアウォール ルール] ページに移動

  2. 次のチェックボックスをオンにします。 削除するファイアウォール ルール。
  3. ファイアウォールルールを削除するには、[削除] () をクリックします。

このページは役立ちましたか?評価をお願いいたします。

フィードバックを送信...

Cloud Speech-to-Text ドキュメント
ご不明な点がありましたら、Google のサポートページをご覧ください。