Pub/Sub Lite-Nachrichten mit Apache Spark schreiben
Der Pub/Sub Lite Spark-Connector ist eine Open-Source-Java-Clientbibliothek, die die Verwendung von Pub/Sub Lite als Eingabe- und Ausgabequelle für strukturiertes Apache Spark Streaming unterstützt. Der Connector funktioniert in allen Apache Spark-Distributionen, einschließlich Dataproc.
In dieser Schnellstartanleitung werden folgende Verfahren erläutert:
- Nachrichten aus Pub/Sub Lite lesen
- Nachrichten in Pub/Sub Lite schreiben
PySpark über einen Dataproc Spark-Cluster verwenden
Hinweis
- Melden Sie sich bei Ihrem Google Cloud-Konto an. Wenn Sie mit Google Cloud noch nicht vertraut sind, erstellen Sie ein Konto, um die Leistungsfähigkeit unserer Produkte in der Praxis sehen und bewerten zu können. Neukunden erhalten außerdem ein Guthaben von 300 $, um Arbeitslasten auszuführen, zu testen und bereitzustellen.
-
Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.
-
Die Abrechnung für das Cloud-Projekt muss aktiviert sein. So prüfen Sie, ob die Abrechnung für ein Projekt aktiviert ist.
-
Pub/Sub Lite, Dataproc, Cloud Storage, Logging APIs aktivieren.
- Installieren Sie die Google Cloud CLI.
-
Führen Sie folgenden Befehl aus, um die gcloud CLI zu initialisieren:
gcloud init
-
Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.
-
Die Abrechnung für das Cloud-Projekt muss aktiviert sein. So prüfen Sie, ob die Abrechnung für ein Projekt aktiviert ist.
-
Pub/Sub Lite, Dataproc, Cloud Storage, Logging APIs aktivieren.
- Installieren Sie die Google Cloud CLI.
-
Führen Sie folgenden Befehl aus, um die gcloud CLI zu initialisieren:
gcloud init
Einrichten
Variablen für Ihr Projekt erstellen
export PROJECT_ID=$(gcloud config get-value project)
export PROJECT_NUMBER=$(gcloud projects list \ --filter="projectId:$PROJECT_ID" \ --format="value(PROJECT_NUMBER)")
Cloud Storage-Bucket erstellen Cloud Storage-Bucket-Namen müssen global eindeutig sein.
export BUCKET=your-bucket-name
gsutil mb gs://$BUCKET
Erstellen Sie ein Pub/Sub Lite-Thema und -Abo an einem unterstützten Standort. Weitere Informationen finden Sie unter Thema erstellen, wenn Sie eine Pub/Sub Lite-Reservierung verwenden.
export TOPIC=your-lite-topic-id
export SUBSCRIPTION=your-lite-subscription-id
export PUBSUBLITE_LOCATION=your-lite-location
gcloud pubsub lite-topics create $TOPIC \ --location=$PUBSUBLITE_LOCATION \ --partitions=2 \ --per-partition-bytes=30GiB
gcloud pubsub lite-subscriptions create $SUBSCRIPTION \ --location=$PUBSUBLITE_LOCATION \ --topic=$TOPIC
Erstellen Sie einen Dataproc-Cluster.
export DATAPROC_REGION=your-dataproc-region
export CLUSTER_ID=your-dataproc-cluster-id
gcloud dataproc clusters create $CLUSTER_ID \ --region $DATAPROC_REGION \ --image-version 2.1 \ --scopes 'https://www.googleapis.com/auth/cloud-platform' \ --enable-component-gateway \ --bucket $BUCKET
--region
: Eine unterstützte Dataproc-Region, in der sich Ihr Pub/Sub Lite-Thema und -Abo befinden.--image-version
: Die Image-Version des Clusters, die die auf dem Cluster installierte Apache Spark-Version bestimmt. Wählen Sie Image-Release-Versionen 2.x.x aus, da der Pub/Sub Lite Spark-Connector derzeit Apache Spark 3.x.x unterstützt.--scopes
: API-Zugriff auf Google Cloud-Dienste im selben Projekt aktivieren.--enable-component-gateway
: Zugriff auf die Apache Spark-Web-UI aktivieren.--bucket
: Ein Cloud Storage-Staging-Bucket, in dem Clusterjobabhängigkeiten, Treiberausgaben und Clusterkonfigurationsdateien gespeichert werden.
Klonen Sie das Kurzanleitungs-Repository und gehen Sie zum Beispielcodeverzeichnis:
git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git
cd python-docs-samples/pubsublite/spark-connector/
In Pub/Sub Lite schreiben
Im folgenden Beispiel werden folgende Aufgaben ausgeführt:
- Eine Ratenquelle erstellen, die aufeinanderfolgende Zahlen und Zeitstempel generiert, die als
spark.sql.Row
formatiert sind - Daten transformieren, damit sie dem erforderlichen Tabellenschema der
writeStream
API des Pub/Sub Lite Spark-Connectors entsprechen - Daten in ein vorhandenes Pub/Sub Lite-Thema schreiben
So senden Sie den Schreibjob an Dataproc:
Console
- Laden Sie das PySpark-Skript in Ihren Cloud Storage-Bucket hoch.
- Gehen Sie zur Cloud Storage Console.
- Wählen Sie Ihren Bucket aus.
- Wählen Sie unter Dateien hochladen das PySpark-Skript hoch, das Sie verwenden möchten.
- Senden Sie den Job an Ihren Dataproc-Cluster:
- Rufen Sie die Dataproc-Konsole auf.
- Wechseln Sie zu "Jobs".
- Klicken Sie auf Job senden.
- Geben Sie die Jobdetails ein.
- Wählen Sie unter Cluster Ihren Cluster aus.
- Geben Sie unter Job einen Namen für die Job-ID ein.
- Wählen Sie als Jobtyp die Option "PySpark" aus.
- Geben Sie für die Python-Hauptdatei den gsutil-URI des hochgeladenen PySpark-Skripts an, der mit
gs://
beginnt. - Wählen Sie für Jar-Dateien die neueste Spark-Connector-Version von Maven aus, suchen Sie in den Downloadoptionen nach der JAR-Datei mit Abhängigkeiten und kopieren Sie ihren Link.
- Wenn Sie das vollständige PySpark-Skript von GitHub verwenden, geben Sie unter Argumente die Werte
--project_number=
PROJECT_NUMBER,--location=
PUBSUBLITE_LOCATION,--topic_id=
TOPIC_ID ein. Wenn Sie das PySpark-Skript oben kopieren und die Aufgaben abgeschlossen ist, lassen Sie das Feld leer. - Geben Sie unter Properties den Schlüssel
spark.master
und den Wertyarn
ein. - Klicken Sie auf Senden.
gcloud
Verwenden Sie den Befehl gcloud dataproc jobs submit pyspark, um den Job an Dataproc zu senden:
gcloud dataproc jobs submit pyspark spark_streaming_to_pubsublite_example.py \
--region=$DATAPROC_REGION \
--cluster=$CLUSTER_ID \
--jars=gs://spark-lib/pubsublite/pubsublite-spark-sql-streaming-LATEST-with-dependencies.jar \
--driver-log-levels=root=INFO \
--properties=spark.master=yarn \
-- --project_number=$PROJECT_NUMBER --location=$PUBSUBLITE_LOCATION --topic_id=$TOPIC
--region
: die vorab ausgewählte Dataproc-Region.--cluster
: der Name des Dataproc-Clusters.--jars
: die Uber-JAR-Datei des Pub/Sub Lite Spark-Connectors mit Abhängigkeiten in einem öffentlichen Cloud Storage-Bucket. Sie können auch diesen Link verwenden, um die Uber-JAR-Datei mit Abhängigkeiten von Maven herunterzuladen.--driver-log-levels
: Setzen Sie die Logging-Ebene auf der Stammebene auf INFO.--properties
: Verwenden Sie den YARN-Ressourcenmanager für den Spark-Master.--
: Geben Sie die für das Skript erforderlichen Argumente an.
Wenn der Vorgang writeStream
erfolgreich ist, sollten Sie sowohl auf der lokalen Seite als auch auf der Seite mit den Jobdetails in der Google Cloud Console Logeinträge wie die folgenden sehen:
INFO com.google.cloud.pubsublite.spark.PslStreamWriter: Committed 1 messages for epochId ..
Aus Pub/Sub Lite lesen
Im folgenden Beispiel werden Nachrichten aus einem vorhandenen Pub/Sub Lite-Abo mit der readStream
API gelesen. Der Connector gibt Nachrichten aus, die dem festen Tabellenschema entsprechen, das als spark.sql.Row
formatiert ist.
So senden Sie den Lesejob an Dataproc:
Console
- Laden Sie das PySpark-Skript in Ihren Cloud Storage-Bucket hoch.
- Gehen Sie zur Cloud Storage Console.
- Wählen Sie Ihren Bucket aus.
- Wählen Sie unter Dateien hochladen das PySpark-Skript hoch, das Sie verwenden möchten.
- Senden Sie den Job an Ihren Dataproc-Cluster:
- Rufen Sie die Dataproc-Konsole auf.
- Wechseln Sie zu "Jobs".
- Klicken Sie auf Job senden.
- Geben Sie die Jobdetails ein.
- Wählen Sie unter Cluster Ihren Cluster aus.
- Geben Sie unter Job einen Namen für die Job-ID ein.
- Wählen Sie als Jobtyp die Option "PySpark" aus.
- Geben Sie für die Python-Hauptdatei den gsutil-URI des hochgeladenen PySpark-Skripts an, der mit
gs://
beginnt. - Wählen Sie für Jar-Dateien die neueste Spark-Connector-Version von Maven aus, suchen Sie in den Downloadoptionen nach der JAR-Datei mit Abhängigkeiten und kopieren Sie ihren Link.
- Wenn Sie das vollständige PySpark-Skript von GitHub verwenden, geben Sie unter Argumente die Werte
--project_number=
PROJECT_NUMBER,--location=
PUBSUBLITE_LOCATION,--subscription_id=
SUBSCRIPTION_ID ein. Wenn Sie das PySpark-Skript oben kopieren und die Aufgaben abgeschlossen ist, lassen Sie das Feld leer. - Geben Sie unter Properties den Schlüssel
spark.master
und den Wertyarn
ein. - Klicken Sie auf Senden.
gcloud
Verwenden Sie den Befehl gcloud dataproc jobs submit pyspark noch einmal, um den Job an Dataproc zu senden:
gcloud dataproc jobs submit pyspark spark_streaming_to_pubsublite_example.py \
--region=$DATAPROC_REGION \
--cluster=$CLUSTER_ID \
--jars=gs://spark-lib/pubsublite/pubsublite-spark-sql-streaming-LATEST-with-dependencies.jar \
--driver-log-levels=root=INFO \
--properties=spark.master=yarn \
-- --project_number=$PROJECT_NUMBER --location=$PUBSUBLITE_LOCATION --subscription_id=$SUBSCRIPTION
--region
: die vorab ausgewählte Dataproc-Region.--cluster
: der Name des Dataproc-Clusters.--jars
: die Uber-JAR-Datei des Pub/Sub Lite Spark-Connectors mit Abhängigkeiten in einem öffentlichen Cloud Storage-Bucket. Sie können auch diesen Link verwenden, um die Uber-JAR-Datei mit Abhängigkeiten von Maven herunterzuladen.--driver-log-levels
: Setzen Sie die Logging-Ebene auf der Stammebene auf INFO.--properties
: Verwenden Sie den YARN-Ressourcenmanager für den Spark-Master.--
: Geben Sie die erforderlichen Argumente für das Skript an.
Wenn der Vorgang readStream
erfolgreich ist, sollten Sie sowohl auf der lokalen Seite als auch auf der Seite mit den Jobdetails in der Google Cloud Console Logeinträge wie die folgenden sehen:
+--------------------+---------+------+---+----+--------------------+--------------------+----------+
| subscription|partition|offset|key|data| publish_timestamp| event_timestamp|attributes|
+--------------------+---------+------+---+----+--------------------+--------------------+----------+
|projects/50200928...| 0| 89523| 0| .|2021-09-03 23:01:...|2021-09-03 22:56:...| []|
|projects/50200928...| 0| 89524| 1| .|2021-09-03 23:01:...|2021-09-03 22:56:...| []|
|projects/50200928...| 0| 89525| 2| .|2021-09-03 23:01:...|2021-09-03 22:56:...| []|
Nachrichten aus Pub/Sub Lite noch einmal abspielen und dauerhaft löschen
Seek-Operationen funktionieren nicht, wenn mit Pub/Sub Lite Spark Connector aus Pub/Sub Lite gelesen wird, da Apache Spark-Systeme ihre eigenen Offsets innerhalb von Partitionen verfolgen. Die Problemumgehung besteht darin, die Workflows zu leeren, zu suchen und neu zu starten.
Bereinigen
So vermeiden Sie, dass Ihrem Google Cloud-Konto die auf dieser Seite verwendeten Ressourcen in Rechnung gestellt werden:
Löschen Sie das Thema und das Abo.
gcloud pubsub lite-topics delete $TOPIC
gcloud pubsub lite-subscriptions delete $SUBSCRIPTION
Löschen Sie den Dataproc-Cluster.
gcloud dataproc clusters delete $CLUSTER_ID --region=$DATAPROC_REGION
Entfernen Sie den Cloud Storage-Bucket.
gsutil rb gs://$BUCKET
Nächste Schritte
Beispiel für die Wortzählung in Java für den Pub/Sub Lite-Spark-Connector
Weitere Spark-Connectors von Google Cloud-Produkten: BigQuery-Connector, Bigtable-Connector, Cloud Storage-Connector.