Ermittelt die (positive oder negative) Einstellung, die in den Entitäten eines Texts aus einer in Cloud Storage gespeicherten Datei zum Ausdruck kommt.
Weitere Informationen
Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:
Codebeispiel
Java
// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
Document doc =
Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
AnalyzeEntitySentimentRequest request =
AnalyzeEntitySentimentRequest.newBuilder()
.setDocument(doc)
.setEncodingType(EncodingType.UTF16)
.build();
// Detect entity sentiments in the given file
AnalyzeEntitySentimentResponse response = language.analyzeEntitySentiment(request);
// Print the response
for (Entity entity : response.getEntitiesList()) {
System.out.printf("Entity: %s\n", entity.getName());
System.out.printf("Salience: %.3f\n", entity.getSalience());
System.out.printf("Sentiment : %s\n", entity.getSentiment());
for (EntityMention mention : entity.getMentionsList()) {
System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
System.out.printf("Content: %s\n", mention.getText().getContent());
System.out.printf("Magnitude: %.3f\n", mention.getSentiment().getMagnitude());
System.out.printf("Sentiment score : %.3f\n", mention.getSentiment().getScore());
System.out.printf("Type: %s\n\n", mention.getType());
}
}
}
Node.js
// Imports the Google Cloud client library
const language = require('@google-cloud/language');
// Creates a client
const client = new language.LanguageServiceClient();
/**
* TODO(developer): Uncomment the following lines to run this code
*/
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';
// Prepares a document, representing a text file in Cloud Storage
const document = {
gcsContentUri: `gs://${bucketName}/${fileName}`,
type: 'PLAIN_TEXT',
};
// Detects sentiment of entities in the document
const [result] = await client.analyzeEntitySentiment({document});
const entities = result.entities;
console.log('Entities and sentiments:');
entities.forEach(entity => {
console.log(` Name: ${entity.name}`);
console.log(` Type: ${entity.type}`);
console.log(` Score: ${entity.sentiment.score}`);
console.log(` Magnitude: ${entity.sentiment.magnitude}`);
});
PHP
use Google\Cloud\Language\V1\Document;
use Google\Cloud\Language\V1\Document\Type;
use Google\Cloud\Language\V1\LanguageServiceClient;
use Google\Cloud\Language\V1\Entity\Type as EntityType;
/**
* @param string $uri The cloud storage object to analyze (gs://your-bucket-name/your-object-name)
*/
function analyze_entity_sentiment_from_file(string $uri): void
{
// Create the Natural Language client
$languageServiceClient = new LanguageServiceClient();
// Create a new Document, pass GCS URI and set type to PLAIN_TEXT
$document = (new Document())
->setGcsContentUri($uri)
->setType(Type::PLAIN_TEXT);
// Call the analyzeEntitySentiment function
$response = $languageServiceClient->analyzeEntitySentiment($document);
$entities = $response->getEntities();
// Print out information about each entity
foreach ($entities as $entity) {
printf('Entity Name: %s' . PHP_EOL, $entity->getName());
printf('Entity Type: %s' . PHP_EOL, EntityType::name($entity->getType()));
printf('Entity Salience: %s' . PHP_EOL, $entity->getSalience());
$sentiment = $entity->getSentiment();
if ($sentiment) {
printf('Entity Magnitude: %s' . PHP_EOL, $sentiment->getMagnitude());
printf('Entity Score: %s' . PHP_EOL, $sentiment->getScore());
}
print(PHP_EOL);
}
}
Python
from google.cloud import language_v1
def sample_analyze_entity_sentiment(gcs_content_uri):
"""
Analyzing Entity Sentiment in text file stored in Cloud Storage
Args:
gcs_content_uri Google Cloud Storage URI where the file content is located.
e.g. gs://[Your Bucket]/[Path to File]
"""
client = language_v1.LanguageServiceClient()
# gcs_content_uri = 'gs://cloud-samples-data/language/entity-sentiment.txt'
# Available types: PLAIN_TEXT, HTML
type_ = language_v1.Document.Type.PLAIN_TEXT
# Optional. If not specified, the language is automatically detected.
# For list of supported languages:
# https://cloud.google.com/natural-language/docs/languages
language = "en"
document = {
"gcs_content_uri": gcs_content_uri,
"type_": type_,
"language": language,
}
# Available values: NONE, UTF8, UTF16, UTF32
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entity_sentiment(
request={"document": document, "encoding_type": encoding_type}
)
# Loop through entitites returned from the API
for entity in response.entities:
print("Representative name for the entity: {}".format(entity.name))
# Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al
print("Entity type: {}".format(language_v1.Entity.Type(entity.type_).name))
# Get the salience score associated with the entity in the [0, 1.0] range
print("Salience score: {}".format(entity.salience))
# Get the aggregate sentiment expressed for this entity in the provided document.
sentiment = entity.sentiment
print("Entity sentiment score: {}".format(sentiment.score))
print("Entity sentiment magnitude: {}".format(sentiment.magnitude))
# Loop over the metadata associated with entity. For many known entities,
# the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid).
# Some entity types may have additional metadata, e.g. ADDRESS entities
# may have metadata for the address street_name, postal_code, et al.
for metadata_name, metadata_value in entity.metadata.items():
print("{} = {}".format(metadata_name, metadata_value))
# Loop over the mentions of this entity in the input document.
# The API currently supports proper noun mentions.
for mention in entity.mentions:
print("Mention text: {}".format(mention.text.content))
# Get the mention type, e.g. PROPER for proper noun
print(
"Mention type: {}".format(
language_v1.EntityMention.Type(mention.type_).name
)
)
# Get the language of the text, which will be the same as
# the language specified in the request or, if not specified,
# the automatically-detected language.
print("Language of the text: {}".format(response.language))
Nächste Schritte
Im Google Cloud-Beispielbrowser können Sie Codebeispiele für andere Google Cloud-Produkte suchen und filtern.