Sentimentanalyse pro Entität

Bei der Sentimentsanalyse pro Entität wird die Entitätsanalyse mit der Sentimentanalyse kombiniert und es wird versucht, die (positive oder negative) Einstellung zu erkennen, die in den Entitäten des Texts zum Ausdruck kommt. Die Entitätsstimmung wird durch numerische Score- und Magnitude-Werte dargestellt und für jede Erwähnung einer Entität bestimmt. Diese Punktzahlen werden dann in eine allgemeine Sentimentpunktzahl (Score und Magnitude) für eine Entität zusammengefasst. Informationen zum Interpretieren der in der Analyse enthaltenen Sentimentwerte score und magnitude finden Sie unter Werte der Sentimentanalyse interpretieren.

Die folgenden Beispiele zeigen, wie die Methode analyzeEntitySentiment abgefragt wird. Für jedes Dokument muss eine separate Anfrage gesendet werden.

Sentimentanalyse pro Entität

Hier ein Beispiel für die Sentimentanalyse pro Entität in Form eines Strings:

Protokoll

Zur Sentimentanalyse in einem Dokument senden Sie eine POST-Anfrage an die REST-Methode documents:analyzeEntitySentiment und geben den entsprechenden Anfragetext an, wie im folgenden Beispiel gezeigt.

Im Beispiel wird mithilfe des Befehls gcloud auth application-default print-access-token ein Zugriffstoken für ein Dienstkonto abgerufen, das für das Projekt mit dem gcloud CLI der Google Cloud Platform eingerichtet wurde. Eine Anleitung zum Installieren des gcloud-CLI und zum Einrichten eines Projekts mit einem Dienstkonto finden Sie in der Kurzanleitung.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'document':{
    'type':'PLAIN_TEXT',
    'content':'I love R&B music. Marvin Gaye is the best.
               \'What\'s Going On\' is one of my favorite songs.
               It was so sad when Marvin Gaye died.'
  },
  'encodingType':'UTF8'
}" "https://language.googleapis.com/v1/documents:analyzeEntitySentiment"

gcloud

Ausführliche Informationen finden Sie unter dem Befehl analyze-entity-sentiment.

Für eine Sentimentanalyse verwenden Sie die gcloud-CLI. Nutzen Sie dabei das Flag --content zur Identifizierung des zu analysierenden Inhalts:

gcloud ml language analyze-entity-sentiment \
  --content="I love R&B music. Marvin Gaye is the best. 'What's Going On' is one of my favorite songs. It was so sad when Marvin Gaye died."

Go

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Go API.

Richten Sie zur Authentifizierung bei Natural Language die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


func analyzeEntitySentiment(ctx context.Context, client *language.Client, text string) (*languagepb.AnalyzeEntitySentimentResponse, error) {
	return client.AnalyzeEntitySentiment(ctx, &languagepb.AnalyzeEntitySentimentRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
	})
}

Java

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Natural Language Java API Referenzdokumentation.

Richten Sie zur Authentifizierung bei Natural Language die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (com.google.cloud.language.v1.LanguageServiceClient language =
    com.google.cloud.language.v1.LanguageServiceClient.create()) {
  com.google.cloud.language.v1.Document doc =
      com.google.cloud.language.v1.Document.newBuilder().setContent(text)
          .setType(com.google.cloud.language.v1.Document.Type.PLAIN_TEXT).build();
  AnalyzeEntitySentimentRequest request =
      AnalyzeEntitySentimentRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(com.google.cloud.language.v1.EncodingType.UTF16)
          .build();
  // Detect entity sentiments in the given string
  AnalyzeEntitySentimentResponse response = language.analyzeEntitySentiment(request);
  // Print the response
  for (com.google.cloud.language.v1.Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s\n", entity.getName());
    System.out.printf("Salience: %.3f\n", entity.getSalience());
    System.out.printf("Sentiment : %s\n", entity.getSentiment());
    for (com.google.cloud.language.v1.EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Magnitude: %.3f\n", mention.getSentiment().getMagnitude());
      System.out.printf("Sentiment score : %.3f\n", mention.getSentiment().getScore());
      System.out.printf("Type: %s\n\n", mention.getType());
    }
  }
}

Node.js

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Node.js API.

Richten Sie zur Authentifizierung bei Natural Language Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Imports the Google Cloud client library
const language = require('@google-cloud/language');

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Detects sentiment of entities in the document
const [result] = await client.analyzeEntitySentiment({document});
const entities = result.entities;

console.log('Entities and sentiments:');
entities.forEach(entity => {
  console.log(`  Name: ${entity.name}`);
  console.log(`  Type: ${entity.type}`);
  console.log(`  Score: ${entity.sentiment.score}`);
  console.log(`  Magnitude: ${entity.sentiment.magnitude}`);
});

Python

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken Weitere Informationen finden Sie in der Natural Language Python API Referenzdokumentation.

Richten Sie zur Authentifizierung bei Natural Language die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.cloud import language_v1


def sample_analyze_entity_sentiment(text_content):
    """
    Analyzing Entity Sentiment in a String

    Args:
      text_content The text content to analyze
    """

    client = language_v1.LanguageServiceClient()

    # text_content = 'Grapes are good. Bananas are bad.'

    # Available types: PLAIN_TEXT, HTML
    type_ = language_v1.types.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language = "en"
    document = {"content": text_content, "type_": type_, "language": language}

    # Available values: NONE, UTF8, UTF16, UTF32
    encoding_type = language_v1.EncodingType.UTF8

    response = client.analyze_entity_sentiment(
        request={"document": document, "encoding_type": encoding_type}
    )
    # Loop through entitites returned from the API
    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")
        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al
        print(f"Entity type: {language_v1.Entity.Type(entity.type_).name}")
        # Get the salience score associated with the entity in the [0, 1.0] range
        print(f"Salience score: {entity.salience}")
        # Get the aggregate sentiment expressed for this entity in the provided document.
        sentiment = entity.sentiment
        print(f"Entity sentiment score: {sentiment.score}")
        print(f"Entity sentiment magnitude: {sentiment.magnitude}")
        # Loop over the metadata associated with entity. For many known entities,
        # the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid).
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name} = {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")
            # Get the mention type, e.g. PROPER for proper noun
            print(
                "Mention type: {}".format(
                    language_v1.EntityMention.Type(mention.type_).name
                )
            )

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language}")

Weitere Sprachen

C#: Folgen Sie der Anleitung zur Einrichtung von C# auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für .NET auf.

PHP: Folgen Sie der Anleitung zur Einrichtung von PHP auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für PHP auf.

Ruby Bitte folgen Sie der Anleitung für die Einrichtung von Ruby auf der Seite „Clientbibliotheken“ und rufen Sie dann die Natural Language-Referenzdokumentation für Ruby

Sentimentanalyse pro Entität in Cloud Storage

Hier ist ein Beispiel für die Sentimentanalyse pro Entität, die in einer Textdatei in Cloud Storage gespeichert ist:

Protokoll

Zur Sentimentanalyse pro Entität in einem Dokument, das in Cloud Storage gespeichert ist, senden Sie eine POST-Anfrage an die REST-Methode documents:analyzeEntitySentiment und geben dabei den entsprechenden Anfragetext mit dem Pfad zum Dokument an. Beispiel:

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'document':{
    'type':'PLAIN_TEXT',
    'gcsContentUri':'gs://<bucket-name>/<object-name>'
  }
}" "https://language.googleapis.com/v1/documents:analyzeEntitySentiment"

gcloud

Ausführliche Informationen finden Sie unter dem Befehl analyze-entity-sentiment.

Für eine Sentimentanalyse verwenden Sie die gcloud-CLI. Nutzen Sie dabei das Flag --content zur Identifizierung des zu analysierenden Inhalts:

gcloud ml language analyze-entity-sentiment \
  --content-file=gs://<bucket-name>/<object-name>

Java

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Natural Language Java API Referenzdokumentation.

Richten Sie zur Authentifizierung bei Natural Language die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (com.google.cloud.language.v1.LanguageServiceClient language =
    com.google.cloud.language.v1.LanguageServiceClient.create()) {
  com.google.cloud.language.v1.Document doc =
      com.google.cloud.language.v1.Document.newBuilder().setGcsContentUri(gcsUri)
          .setType(com.google.cloud.language.v1.Document.Type.PLAIN_TEXT).build();
  AnalyzeEntitySentimentRequest request =
      AnalyzeEntitySentimentRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(com.google.cloud.language.v1.EncodingType.UTF16)
          .build();
  // Detect entity sentiments in the given file
  AnalyzeEntitySentimentResponse response = language.analyzeEntitySentiment(request);
  // Print the response
  for (com.google.cloud.language.v1.Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s\n", entity.getName());
    System.out.printf("Salience: %.3f\n", entity.getSalience());
    System.out.printf("Sentiment : %s\n", entity.getSentiment());
    for (com.google.cloud.language.v1.EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Magnitude: %.3f\n", mention.getSentiment().getMagnitude());
      System.out.printf("Sentiment score : %.3f\n", mention.getSentiment().getScore());
      System.out.printf("Type: %s\n\n", mention.getType());
    }
  }
}

Node.js

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken Weitere Informationen finden Sie in der Referenzdokumentation zur Natural Language Node.js API.

Richten Sie zur Authentifizierung bei Natural Language die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Imports the Google Cloud client library
const language = require('@google-cloud/language');

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Detects sentiment of entities in the document
const [result] = await client.analyzeEntitySentiment({document});
const entities = result.entities;

console.log('Entities and sentiments:');
entities.forEach(entity => {
  console.log(`  Name: ${entity.name}`);
  console.log(`  Type: ${entity.type}`);
  console.log(`  Score: ${entity.sentiment.score}`);
  console.log(`  Magnitude: ${entity.sentiment.magnitude}`);
});

Python

Informationen zum Installieren und Verwenden der Clientbibliothek für Natural Language finden Sie unter Natural Language-Clientbibliotheken. Weitere Informationen finden Sie in der Natural Language Python API Referenzdokumentation.

Richten Sie zur Authentifizierung bei Natural Language die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.cloud import language_v1


def sample_analyze_entity_sentiment(gcs_content_uri):
    """
    Analyzing Entity Sentiment in text file stored in Cloud Storage

    Args:
      gcs_content_uri Google Cloud Storage URI where the file content is located.
      e.g. gs://[Your Bucket]/[Path to File]
    """

    client = language_v1.LanguageServiceClient()

    # gcs_content_uri = 'gs://cloud-samples-data/language/entity-sentiment.txt'

    # Available types: PLAIN_TEXT, HTML
    type_ = language_v1.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": type_,
        "language": language,
    }

    # Available values: NONE, UTF8, UTF16, UTF32
    encoding_type = language_v1.EncodingType.UTF8

    response = client.analyze_entity_sentiment(
        request={"document": document, "encoding_type": encoding_type}
    )
    # Loop through entitites returned from the API
    for entity in response.entities:
        print(f"Representative name for the entity: {entity.name}")
        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al
        print(f"Entity type: {language_v1.Entity.Type(entity.type_).name}")
        # Get the salience score associated with the entity in the [0, 1.0] range
        print(f"Salience score: {entity.salience}")
        # Get the aggregate sentiment expressed for this entity in the provided document.
        sentiment = entity.sentiment
        print(f"Entity sentiment score: {sentiment.score}")
        print(f"Entity sentiment magnitude: {sentiment.magnitude}")
        # Loop over the metadata associated with entity. For many known entities,
        # the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid).
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(f"{metadata_name} = {metadata_value}")

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(f"Mention text: {mention.text.content}")
            # Get the mention type, e.g. PROPER for proper noun
            print(
                "Mention type: {}".format(
                    language_v1.EntityMention.Type(mention.type_).name
                )
            )

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language}")

Weitere Sprachen

C# Bitte folgen Sie der Anleitung für die Einrichtung von C# auf der Seite „Clientbibliotheken“ und rufen Sie dann die Natural Language-Referenzdokumentation für .NET

PHP: Bitte folgen Sie der Anleitung zur Einrichtung von PHP auf der Seite „Clientbibliotheken“ und rufen Sie dann die Natural Language-Referenzdokumentation für PHP

Ruby: Folgen Sie der Anleitung zur Einrichtung von Ruby auf der Seite der Clientbibliotheken und rufen Sie dann die Natural Language-Referenzdokumentation für Ruby auf.