KubeRay を使用して GKE の TPU で LLM をサービングする


このチュートリアルでは、Ray Operator アドオンvLLM サービング フレームワークを使用して、Google Kubernetes Engine(GKE)で Tensor Processing Unit(TPU)を使用して大規模言語モデル(LLM)を提供する方法について説明します。

このチュートリアルでは、次のように TPU v5e または TPU Trillium(v6e)で LLM モデルを提供できます。

このガイドは、生成 AI をご利用のお客様、GKE の新規または既存のユーザー、ML エンジニア、MLOps(DevOps)エンジニア、プラットフォーム管理者で、Kubernetes コンテナ オーケストレーション機能を使用して、vLLM を使用して TPU で Ray を使用してモデルを提供することに関心のある方を対象としています。

背景

このセクションでは、このガイドで使用されている重要なテクノロジーについて説明します。

GKE マネージド Kubernetes サービス

Google Cloud には、AI/ML ワークロードのデプロイと管理に適した GKE など、幅広いサービスが用意されています。GKE は、コンテナ化されたアプリケーションのデプロイ、スケーリング、管理を簡素化するマネージド Kubernetes サービスです。GKE は、LLM の計算需要を処理するために必要なインフラストラクチャ(スケーラブルなリソース、分散コンピューティング、効率的なネットワーキングなど)を提供します。

Kubernetes の主なコンセプトについて詳しくは、Kubernetes の学習を開始するをご覧ください。GKE の詳細と、GKE が Kubernetes のスケーリング、自動化、管理にどのように役立つかについては、GKE の概要をご覧ください。

Ray オペレーター

GKE の Ray Operator アドオンは、ML ワークロードのサービング、トレーニング、ファインチューニングを行うエンドツーエンドの AI/ML プラットフォームを提供します。このチュートリアルでは、Ray のフレームワークである Ray Serve を使用して、Hugging Face の一般的な LLM を提供します。

TPU

TPU は、Google が独自に開発した特定用途向け集積回路(ASIC)であり、TensorFlowPyTorchJAX などのフレームワークを使用して構築された ML モデルと AI モデルを高速化するために使用されます。

このチュートリアルでは、低レイテンシでプロンプトをサービングするための各モデルの要件に基づいて構成された TPU トポロジを使用して、TPU v5e ノードまたは TPU Trillium(v6e)ノードで LLM モデルをサービングする方法について説明します。

vLLM

vLLM は、TPU のサービング スループットを向上させることができる、高度に最適化されたオープンソースの LLM サービング フレームワークであり、次のような機能を備えています。

  • PagedAttention による Transformer の実装の最適化
  • サービング スループットを全体的に向上させる連続的なバッチ処理
  • 複数の GPU でのテンソル並列処理と分散サービング

詳細については、vLLM のドキュメントをご覧ください。

目標

このチュートリアルでは、次の手順について説明します。

  1. TPU ノードプールを含む GKE クラスタを作成します。
  2. 単一ホストの TPU スライスを使用して RayCluster カスタム リソースをデプロイします。GKE は、RayCluster カスタム リソースを Kubernetes Pod としてデプロイします。
  3. LLM を提供する。
  4. モデルを操作する。

必要に応じて、Ray Serve フレームワークでサポートされている次のモデル提供リソースと手法を構成できます。

  • RayService カスタム リソースをデプロイします。
  • モデル構成で複数のモデルを作成する。

始める前に

作業を始める前に、次のことを確認してください。

  • Google Kubernetes Engine API を有効にする。
  • Google Kubernetes Engine API の有効化
  • このタスクに Google Cloud CLI を使用する場合は、gcloud CLI をインストールして初期化する。すでに gcloud CLI をインストールしている場合は、gcloud components update を実行して最新のバージョンを取得する。
  • Hugging Face アカウントを作成します(まだ作成していない場合)。
  • Hugging Face トークンがあることを確認します。
  • 使用する Hugging Face モデルにアクセスできることを確認します。通常、このアクセス権は、契約に署名し、Hugging Face モデルページでモデル所有者にアクセスをリクエストすることで取得できます。

環境を準備する

  1. Google Cloud 単一ホスト TPU v5e または単一ホスト TPU Trillium(v6e)に十分な割り当てがプロジェクトにあることを確認します。割り当てを管理するには、TPU の割り当てをご覧ください。

  2. Google Cloud コンソールで、Cloud Shell インスタンスを起動します。
    Cloud Shell を開く

  3. サンプル リポジトリのクローンを作成します。

    git clone https://github.com/GoogleCloudPlatform/kubernetes-engine-samples.git
    cd kubernetes-engine-samples
    
  4. 作業ディレクトリに移動します。

    cd ai-ml/gke-ray/rayserve/llm
    
  5. GKE クラスタの作成にデフォルトの環境変数を設定します。

    Llama-3-8B-Instruct

    export PROJECT_ID=$(gcloud config get project)
    export PROJECT_NUMBER=$(gcloud projects describe ${PROJECT_ID} --format="value(projectNumber)")
    export CLUSTER_NAME=vllm-tpu
    export COMPUTE_REGION=REGION
    export COMPUTE_ZONE=ZONE
    export HF_TOKEN=HUGGING_FACE_TOKEN
    export GSBUCKET=vllm-tpu-bucket
    export KSA_NAME=vllm-sa
    export NAMESPACE=default
    export MODEL_ID="meta-llama/Meta-Llama-3-8B-Instruct"
    export VLLM_IMAGE=docker.io/vllm/vllm-tpu:866fa4550d572f4ff3521ccf503e0df2e76591a1
    export SERVICE_NAME=vllm-tpu-head-svc
    

    次のように置き換えます。

    • HUGGING_FACE_TOKEN: Hugging Face アクセス トークン。
    • REGION: TPU 割り当てがあるリージョン。使用する TPU バージョンがこのリージョンで使用可能であることを確認します。詳細については、GKE での TPU の可用性をご覧ください。
    • ZONE: 使用可能な TPU 割り当てがあるゾーン。
    • VLLM_IMAGE: vLLM TPU イメージ。公開 docker.io/vllm/vllm-tpu:866fa4550d572f4ff3521ccf503e0df2e76591a1 イメージを使用するか、独自の TPU イメージをビルドできます。

    Mistral-7B

    export PROJECT_ID=$(gcloud config get project)
    export PROJECT_NUMBER=$(gcloud projects describe ${PROJECT_ID} --format="value(projectNumber)")
    export CLUSTER_NAME=vllm-tpu
    export COMPUTE_REGION=REGION
    export COMPUTE_ZONE=ZONE
    export HF_TOKEN=HUGGING_FACE_TOKEN
    export GSBUCKET=vllm-tpu-bucket
    export KSA_NAME=vllm-sa
    export NAMESPACE=default
    export MODEL_ID="mistralai/Mistral-7B-Instruct-v0.3"
    export TOKENIZER_MODE=mistral
    export VLLM_IMAGE=docker.io/vllm/vllm-tpu:866fa4550d572f4ff3521ccf503e0df2e76591a1
    export SERVICE_NAME=vllm-tpu-head-svc
    

    次のように置き換えます。

    • HUGGING_FACE_TOKEN: Hugging Face アクセス トークン。
    • REGION: TPU 割り当てがあるリージョン。使用する TPU バージョンがこのリージョンで利用可能であることを確認します。詳細については、GKE での TPU の可用性をご覧ください。
    • ZONE: 使用可能な TPU 割り当てがあるゾーン。
    • VLLM_IMAGE: vLLM TPU イメージ。公開 docker.io/vllm/vllm-tpu:866fa4550d572f4ff3521ccf503e0df2e76591a1 イメージを使用するか、独自の TPU イメージをビルドできます。

    Llama 3.1 70B

    export PROJECT_ID=$(gcloud config get project)
    export PROJECT_NUMBER=$(gcloud projects describe ${PROJECT_ID} --format="value(projectNumber)")
    export CLUSTER_NAME=vllm-tpu
    export COMPUTE_REGION=REGION
    export COMPUTE_ZONE=ZONE
    export HF_TOKEN=HUGGING_FACE_TOKEN
    export GSBUCKET=vllm-tpu-bucket
    export KSA_NAME=vllm-sa
    export NAMESPACE=default
    export MODEL_ID="meta-llama/Llama-3.1-70B"
    export MAX_MODEL_LEN=8192
    export VLLM_IMAGE=docker.io/vllm/vllm-tpu:866fa4550d572f4ff3521ccf503e0df2e76591a1
    export SERVICE_NAME=vllm-tpu-head-svc
    

    次のように置き換えます。

    • HUGGING_FACE_TOKEN: Hugging Face アクセス トークン。
    • REGION: TPU 割り当てがあるリージョン。使用する TPU バージョンがこのリージョンで利用可能であることを確認します。詳細については、GKE での TPU の可用性をご覧ください。
    • ZONE: 使用可能な TPU 割り当てがあるゾーン。
    • VLLM_IMAGE: vLLM TPU イメージ。公開 docker.io/vllm/vllm-tpu:866fa4550d572f4ff3521ccf503e0df2e76591a1 イメージを使用するか、独自の TPU イメージをビルドできます。
  6. vLLM コンテナ イメージを pull します。

    docker pull ${VLLM_IMAGE}
    

クラスタの作成

Ray Operator アドオンを使用して、GKE Autopilot クラスタまたは Standard クラスタで Ray を使用して TPU で LLM を提供できます。

ベスト プラクティス:

フルマネージドの Kubernetes エクスペリエンスを実現するには、Autopilot クラスタを使用します。ワークロードに最適な GKE の運用モードを選択するには、GKE の運用モードを選択するをご覧ください。

Cloud Shell を使用して、Autopilot クラスタまたは Standard クラスタを作成します。

Autopilot

  1. Ray Operator アドオンを有効にして GKE Autopilot クラスタを作成します。

    gcloud container clusters create-auto ${CLUSTER_NAME}  \
        --enable-ray-operator \
        --release-channel=rapid \
        --location=${COMPUTE_REGION}
    

Standard

  1. Ray Operator アドオンを有効にして Standard クラスタを作成します。

    gcloud container clusters create ${CLUSTER_NAME} \
        --release-channel=rapid \
        --location=${COMPUTE_ZONE} \
        --workload-pool=${PROJECT_ID}.svc.id.goog \
        --machine-type="n1-standard-4" \
        --addons=RayOperator,GcsFuseCsiDriver
    
  2. 単一ホストの TPU スライス ノードプールを作成します。

    Llama-3-8B-Instruct

    gcloud container node-pools create tpu-1 \
        --location=${COMPUTE_ZONE} \
        --cluster=${CLUSTER_NAME} \
        --machine-type=ct5lp-hightpu-8t \
        --num-nodes=1
    

    GKE は、ct5lp-hightpu-8t マシンタイプを持つ TPU v5e ノードプールを作成します。

    Mistral-7B

    gcloud container node-pools create tpu-1 \
        --location=${COMPUTE_ZONE} \
        --cluster=${CLUSTER_NAME} \
        --machine-type=ct5lp-hightpu-8t \
        --num-nodes=1
    

    GKE は、ct5lp-hightpu-8t マシンタイプを持つ TPU v5e ノードプールを作成します。

    Llama 3.1 70B

    gcloud container node-pools create tpu-1 \
        --location=${COMPUTE_ZONE} \
        --cluster=${CLUSTER_NAME} \
        --machine-type=ct6e-standard-8t \
        --num-nodes=1
    

    GKE は、ct6e-standard-8t マシンタイプを持つ TPU v6e ノードプールを作成します。

クラスタと通信するように kubectl を設定する

クラスタと通信するように kubectl を構成するには、次のコマンドを実行します。

Autopilot

gcloud container clusters get-credentials ${CLUSTER_NAME} \
    --location=${COMPUTE_REGION}

Standard

gcloud container clusters get-credentials ${CLUSTER_NAME} \
    --location=${COMPUTE_ZONE}

Hugging Face の認証情報用の Kubernetes Secret を作成する

Hugging Face トークンを含む Kubernetes Secret を作成するには、次のコマンドを実行します。

kubectl create secret generic hf-secret \
    --from-literal=hf_api_token=${HF_TOKEN} \
    --dry-run=client -o yaml | kubectl --namespace ${NAMESPACE} apply -f -

Cloud Storage バケットを作成する

vLLM デプロイの起動時間を短縮し、ノードあたりに必要なディスク容量を最小限に抑えるには、Cloud Storage FUSE CSI ドライバを使用して、ダウンロードしたモデルとコンパイル キャッシュを Ray ノードにマウントします。

Cloud Shell で、次のコマンドを実行します。

gcloud storage buckets create gs://${GSBUCKET} \
    --uniform-bucket-level-access

このコマンドは、Hugging Face からダウンロードしたモデルファイルを保存する Cloud Storage バケットを作成します。

バケットにアクセスする Kubernetes ServiceAccount を設定する

  1. Kubernetes ServiceAccount を作成します。

    kubectl create serviceaccount ${KSA_NAME} \
        --namespace ${NAMESPACE}
    
  2. Kubernetes ServiceAccount に Cloud Storage バケットに対する読み取り / 書き込みアクセス権を付与します。

    gcloud storage buckets add-iam-policy-binding gs://${GSBUCKET} \
        --member "principal://iam.googleapis.com/projects/${PROJECT_NUMBER}/locations/global/workloadIdentityPools/${PROJECT_ID}.svc.id.goog/subject/ns/${NAMESPACE}/sa/${KSA_NAME}" \
        --role "roles/storage.objectUser"
    

    GKE は、LLM 用に次のリソースを作成します。

    1. ダウンロードしたモデルとコンパイル キャッシュを保存する Cloud Storage バケット。Cloud Storage FUSE CSI ドライバがバケットのコンテンツを読み取ります。
    2. ファイル キャッシュが有効になっているボリュームと、Cloud Storage FUSE の並列ダウンロード機能。
    ベスト プラクティス:

    モデル コンテンツ(重みファイルなど)の予想サイズに応じて、tmpfs または Hyperdisk / Persistent Disk を基盤とするファイル キャッシュを使用します。このチュートリアルでは、RAM を基盤とする Cloud Storage FUSE ファイル キャッシュを使用します。

RayCluster カスタム リソースをデプロイする

RayCluster カスタム リソースをデプロイします。通常、これは 1 つのシステム Pod と複数のワーカー Pod で構成されます。

Llama-3-8B-Instruct

Llama 3 8B 命令チューニング済みモデルをデプロイする RayCluster カスタム リソースを作成します。手順は次のとおりです。

  1. ray-cluster.tpu-v5e-singlehost.yaml マニフェストを調べます。

    apiVersion: ray.io/v1
    kind: RayCluster
    metadata:
      name: vllm-tpu
    spec:
      headGroupSpec:
        rayStartParams: {}
        template:
          metadata:
            annotations:
              gke-gcsfuse/volumes: "true"
              gke-gcsfuse/cpu-limit: "0"
              gke-gcsfuse/memory-limit: "0"
              gke-gcsfuse/ephemeral-storage-limit: "0"
          spec:
            serviceAccountName: $KSA_NAME
            containers:
              - name: ray-head
                image: $VLLM_IMAGE
                imagePullPolicy: IfNotPresent
                resources:
                  limits:
                    cpu: "2"
                    memory: 8G
                  requests:
                    cpu: "2"
                    memory: 8G
                env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                ports:
                  - containerPort: 6379
                    name: gcs
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  - containerPort: 8471
                    name: slicebuilder
                  - containerPort: 8081
                    name: mxla
                volumeMounts:
                - name: gcs-fuse-csi-ephemeral
                  mountPath: /data
                - name: dshm
                  mountPath: /dev/shm
            volumes:
            - name: gke-gcsfuse-cache
              emptyDir:
                medium: Memory
            - name: dshm
              emptyDir:
                medium: Memory
            - name: gcs-fuse-csi-ephemeral
              csi:
                driver: gcsfuse.csi.storage.gke.io
                volumeAttributes:
                  bucketName: $GSBUCKET
                  mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
      workerGroupSpecs:
      - groupName: tpu-group
        replicas: 1
        minReplicas: 1
        maxReplicas: 1
        numOfHosts: 1
        rayStartParams: {}
        template:
          metadata:
            annotations:
              gke-gcsfuse/volumes: "true"
              gke-gcsfuse/cpu-limit: "0"
              gke-gcsfuse/memory-limit: "0"
              gke-gcsfuse/ephemeral-storage-limit: "0"
          spec:
            serviceAccountName: $KSA_NAME
            containers:
              - name: ray-worker
                image: $VLLM_IMAGE
                imagePullPolicy: IfNotPresent
                resources:
                  limits:
                    cpu: "100"
                    google.com/tpu: "8"
                    ephemeral-storage: 80G
                    memory: 200G
                  requests:
                    cpu: "100"
                    google.com/tpu: "8"
                    ephemeral-storage: 80G
                    memory: 200G
                env:
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                volumeMounts:
                - name: gcs-fuse-csi-ephemeral
                  mountPath: /data
                - name: dshm
                  mountPath: /dev/shm
            volumes:
            - name: gke-gcsfuse-cache
              emptyDir:
                medium: Memory
            - name: dshm
              emptyDir:
                medium: Memory
            - name: gcs-fuse-csi-ephemeral
              csi:
                driver: gcsfuse.csi.storage.gke.io
                volumeAttributes:
                  bucketName: $GSBUCKET
                  mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
            nodeSelector:
              cloud.google.com/gke-tpu-accelerator: tpu-v5-lite-podslice
              cloud.google.com/gke-tpu-topology: 2x4
  2. 次のようにマニフェストを適用します。

    envsubst < tpu/ray-cluster.tpu-v5e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
    

    envsubst コマンドは、マニフェスト内の環境変数を置き換えます。

GKE は、2x4 トポロジに TPU v5e 単一ホストを含む workergroup を使用して RayCluster カスタム リソースを作成します。

Mistral-7B

Mistral-7B モデルをデプロイする RayCluster カスタム リソースを作成するには、次の操作を行います。

  1. ray-cluster.tpu-v5e-singlehost.yaml マニフェストを調べます。

    apiVersion: ray.io/v1
    kind: RayCluster
    metadata:
      name: vllm-tpu
    spec:
      headGroupSpec:
        rayStartParams: {}
        template:
          metadata:
            annotations:
              gke-gcsfuse/volumes: "true"
              gke-gcsfuse/cpu-limit: "0"
              gke-gcsfuse/memory-limit: "0"
              gke-gcsfuse/ephemeral-storage-limit: "0"
          spec:
            serviceAccountName: $KSA_NAME
            containers:
              - name: ray-head
                image: $VLLM_IMAGE
                imagePullPolicy: IfNotPresent
                resources:
                  limits:
                    cpu: "2"
                    memory: 8G
                  requests:
                    cpu: "2"
                    memory: 8G
                env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                ports:
                  - containerPort: 6379
                    name: gcs
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  - containerPort: 8471
                    name: slicebuilder
                  - containerPort: 8081
                    name: mxla
                volumeMounts:
                - name: gcs-fuse-csi-ephemeral
                  mountPath: /data
                - name: dshm
                  mountPath: /dev/shm
            volumes:
            - name: gke-gcsfuse-cache
              emptyDir:
                medium: Memory
            - name: dshm
              emptyDir:
                medium: Memory
            - name: gcs-fuse-csi-ephemeral
              csi:
                driver: gcsfuse.csi.storage.gke.io
                volumeAttributes:
                  bucketName: $GSBUCKET
                  mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
      workerGroupSpecs:
      - groupName: tpu-group
        replicas: 1
        minReplicas: 1
        maxReplicas: 1
        numOfHosts: 1
        rayStartParams: {}
        template:
          metadata:
            annotations:
              gke-gcsfuse/volumes: "true"
              gke-gcsfuse/cpu-limit: "0"
              gke-gcsfuse/memory-limit: "0"
              gke-gcsfuse/ephemeral-storage-limit: "0"
          spec:
            serviceAccountName: $KSA_NAME
            containers:
              - name: ray-worker
                image: $VLLM_IMAGE
                imagePullPolicy: IfNotPresent
                resources:
                  limits:
                    cpu: "100"
                    google.com/tpu: "8"
                    ephemeral-storage: 80G
                    memory: 200G
                  requests:
                    cpu: "100"
                    google.com/tpu: "8"
                    ephemeral-storage: 80G
                    memory: 200G
                env:
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                volumeMounts:
                - name: gcs-fuse-csi-ephemeral
                  mountPath: /data
                - name: dshm
                  mountPath: /dev/shm
            volumes:
            - name: gke-gcsfuse-cache
              emptyDir:
                medium: Memory
            - name: dshm
              emptyDir:
                medium: Memory
            - name: gcs-fuse-csi-ephemeral
              csi:
                driver: gcsfuse.csi.storage.gke.io
                volumeAttributes:
                  bucketName: $GSBUCKET
                  mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
            nodeSelector:
              cloud.google.com/gke-tpu-accelerator: tpu-v5-lite-podslice
              cloud.google.com/gke-tpu-topology: 2x4
  2. 次のようにマニフェストを適用します。

    envsubst < tpu/ray-cluster.tpu-v5e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
    

    envsubst コマンドは、マニフェスト内の環境変数を置き換えます。

GKE は、2x4 トポロジに TPU v5e 単一ホストを含む workergroup を使用して RayCluster カスタム リソースを作成します。

Llama 3.1 70B

Llama 3.1 70B モデルをデプロイする RayCluster カスタム リソースを作成します。手順は次のとおりです。

  1. ray-cluster.tpu-v6e-singlehost.yaml マニフェストを調べます。

    apiVersion: ray.io/v1
    kind: RayCluster
    metadata:
      name: vllm-tpu
    spec:
      headGroupSpec:
        rayStartParams: {}
        template:
          metadata:
            annotations:
              gke-gcsfuse/volumes: "true"
              gke-gcsfuse/cpu-limit: "0"
              gke-gcsfuse/memory-limit: "0"
              gke-gcsfuse/ephemeral-storage-limit: "0"
          spec:
            serviceAccountName: $KSA_NAME
            containers:
              - name: ray-head
                image: $VLLM_IMAGE
                imagePullPolicy: IfNotPresent
                resources:
                  limits:
                    cpu: "2"
                    memory: 8G
                  requests:
                    cpu: "2"
                    memory: 8G
                env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                ports:
                  - containerPort: 6379
                    name: gcs
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  - containerPort: 8471
                    name: slicebuilder
                  - containerPort: 8081
                    name: mxla
                volumeMounts:
                - name: gcs-fuse-csi-ephemeral
                  mountPath: /data
                - name: dshm
                  mountPath: /dev/shm
            volumes:
            - name: gke-gcsfuse-cache
              emptyDir:
                medium: Memory
            - name: dshm
              emptyDir:
                medium: Memory
            - name: gcs-fuse-csi-ephemeral
              csi:
                driver: gcsfuse.csi.storage.gke.io
                volumeAttributes:
                  bucketName: $GSBUCKET
                  mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
      workerGroupSpecs:
      - groupName: tpu-group
        replicas: 1
        minReplicas: 1
        maxReplicas: 1
        numOfHosts: 1
        rayStartParams: {}
        template:
          metadata:
            annotations:
              gke-gcsfuse/volumes: "true"
              gke-gcsfuse/cpu-limit: "0"
              gke-gcsfuse/memory-limit: "0"
              gke-gcsfuse/ephemeral-storage-limit: "0"
          spec:
            serviceAccountName: $KSA_NAME
            containers:
              - name: ray-worker
                image: $VLLM_IMAGE
                imagePullPolicy: IfNotPresent
                resources:
                  limits:
                    cpu: "100"
                    google.com/tpu: "8"
                    ephemeral-storage: 40G
                    memory: 200G
                  requests:
                    cpu: "100"
                    google.com/tpu: "8"
                    ephemeral-storage: 40G
                    memory: 200G
                env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                volumeMounts:
                - name: gcs-fuse-csi-ephemeral
                  mountPath: /data
                - name: dshm
                  mountPath: /dev/shm
            volumes:
            - name: gke-gcsfuse-cache
              emptyDir:
                medium: Memory
            - name: dshm
              emptyDir:
                medium: Memory
            - name: gcs-fuse-csi-ephemeral
              csi:
                driver: gcsfuse.csi.storage.gke.io
                volumeAttributes:
                  bucketName: $GSBUCKET
                  mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
            nodeSelector:
              cloud.google.com/gke-tpu-accelerator: tpu-v6e-slice
              cloud.google.com/gke-tpu-topology: 2x4
  2. 次のようにマニフェストを適用します。

    envsubst < tpu/ray-cluster.tpu-v6e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
    

    envsubst コマンドは、マニフェスト内の環境変数を置き換えます。

GKE は、2x4 トポロジに TPU v6e 単一ホストを含む workergroup を使用して RayCluster カスタム リソースを作成します。

RayCluster カスタム リソースに接続する

RayCluster カスタム リソースが作成されたら、RayCluster リソースに接続してモデルの提供を開始できます。

  1. GKE が RayCluster Service を作成したことを確認します。

    kubectl --namespace ${NAMESPACE} get raycluster/vllm-tpu \
        --output wide
    

    出力は次のようになります。

    NAME       DESIRED WORKERS   AVAILABLE WORKERS   CPUS   MEMORY   GPUS   TPUS   STATUS   AGE   HEAD POD IP      HEAD SERVICE IP
    vllm-tpu   1                 1                   ###    ###G     0      8      ready    ###   ###.###.###.###  ###.###.###.###
    

    STATUSready になり、HEAD POD IP 列と HEAD SERVICE IP 列に IP アドレスが表示されるまで待ちます。

  2. Ray ヘッドへの port-forwarding セッションを確立します。

    pkill -f "kubectl .* port-forward .* 8265:8265"
    pkill -f "kubectl .* port-forward .* 10001:10001"
    kubectl --namespace ${NAMESPACE} port-forward service/${SERVICE_NAME} 8265:8265 2>&1 >/dev/null &
    kubectl --namespace ${NAMESPACE} port-forward service/${SERVICE_NAME} 10001:10001 2>&1 >/dev/null &
    
  3. Ray クライアントがリモートの RayCluster カスタム リソースに接続できることを確認します。

    docker run --net=host -it ${VLLM_IMAGE} \
    ray list nodes --address http://localhost:8265
    

    出力は次のようになります。

    ======== List: YYYY-MM-DD HH:MM:SS.NNNNNN ========
    Stats:
    ------------------------------
    Total: 2
    
    Table:
    ------------------------------
        NODE_ID    NODE_IP          IS_HEAD_NODE  STATE    STATE_MESSAGE    NODE_NAME          RESOURCES_TOTAL                   LABELS
    0  XXXXXXXXXX  ###.###.###.###  True          ALIVE                     ###.###.###.###    CPU: 2.0                          ray.io/node_id: XXXXXXXXXX
                                                                                               memory: #.### GiB
                                                                                               node:###.###.###.###: 1.0
                                                                                               node:__internal_head__: 1.0
                                                                                               object_store_memory: #.### GiB
    1  XXXXXXXXXX  ###.###.###.###  False         ALIVE                     ###.###.###.###    CPU: 100.0                       ray.io/node_id: XXXXXXXXXX
                                                                                               TPU: 8.0
                                                                                               TPU-v#e-8-head: 1.0
                                                                                               accelerator_type:TPU-V#E: 1.0
                                                                                               memory: ###.### GiB
                                                                                               node:###.###.###.###: 1.0
                                                                                               object_store_memory: ##.### GiB
                                                                                               tpu-group-0: 1.0
    

vLLM を使用してモデルをデプロイする

vLLM を使用してモデルをデプロイします。

Llama-3-8B-Instruct

docker run \
    --env MODEL_ID=${MODEL_ID} \
    --net=host \
    --volume=./tpu:/workspace/vllm/tpu \
    -it \
    ${VLLM_IMAGE} \
    serve run serve_tpu:model \
    --address=ray://localhost:10001 \
    --app-dir=./tpu \
    --runtime-env-json='{"env_vars": {"MODEL_ID": "meta-llama/Meta-Llama-3-8B-Instruct"}}'

Mistral-7B

docker run \
    --env MODEL_ID=${MODEL_ID} \
    --env TOKENIZER_MODE=${TOKENIZER_MODE} \
    --net=host \
    --volume=./tpu:/workspace/vllm/tpu \
    -it \
    ${VLLM_IMAGE} \
    serve run serve_tpu:model \
    --address=ray://localhost:10001 \
    --app-dir=./tpu \
    --runtime-env-json='{"env_vars": {"MODEL_ID": "mistralai/Mistral-7B-Instruct-v0.3", "TOKENIZER_MODE": "mistral"}}'

Llama 3.1 70B

docker run \
    --env MAX_MODEL_LEN=${MAX_MODEL_LEN} \
    --env MODEL_ID=${MODEL_ID} \
    --net=host \
    --volume=./tpu:/workspace/vllm/tpu \
    -it \
    ${VLLM_IMAGE} \
    serve run serve_tpu:model \
    --address=ray://localhost:10001 \
    --app-dir=./tpu \
    --runtime-env-json='{"env_vars": {"MAX_MODEL_LEN": "8192", "MODEL_ID": "meta-llama/Meta-Llama-3.1-70B"}}'

Ray ダッシュボードを表示する

Ray Serve デプロイとその関連ログは、Ray ダッシュボードで確認できます。

  1. Cloud Shell タスクバーの右上にある [ウェブ プレビュー アイコン ウェブでプレビュー] ボタンをクリックします。
  2. [ポートを変更] をクリックし、ポート番号を 8265 に設定します。
  3. [変更してプレビュー] をクリックします。
  4. Ray ダッシュボードで、[Serve] タブをクリックします。

Serve デプロイのステータスが HEALTHY になると、モデルは入力の処理を開始できます。

モデルをサービングする

このガイドでは、プロンプトからテキスト コンテンツを作成できる手法であるテキスト生成をサポートするモデルについて説明します。

Llama-3-8B-Instruct

  1. サーバーへのポート転送を設定します。

    pkill -f "kubectl .* port-forward .* 8000:8000"
    kubectl --namespace ${NAMESPACE} port-forward service/${SERVICE_NAME} 8000:8000 2>&1 >/dev/null &
    
  2. Serve エンドポイントにプロンプトを送信します。

    curl -X POST http://localhost:8000/v1/generate -H "Content-Type: application/json" -d '{"prompt": "What are the top 5 most popular programming languages? Be brief.", "max_tokens": 1024}'
    

Mistral-7B

  1. サーバーへのポート転送を設定します。

    pkill -f "kubectl .* port-forward .* 8000:8000"
    kubectl --namespace ${NAMESPACE} port-forward service/${SERVICE_NAME} 8000:8000 2>&1 >/dev/null &
    
  2. Serve エンドポイントにプロンプトを送信します。

    curl -X POST http://localhost:8000/v1/generate -H "Content-Type: application/json" -d '{"prompt": "What are the top 5 most popular programming languages? Be brief.", "max_tokens": 1024}'
    

Llama 3.1 70B

  1. サーバーへのポート転送を設定します。

    pkill -f "kubectl .* port-forward .* 8000:8000"
    kubectl --namespace ${NAMESPACE} port-forward service/${SERVICE_NAME} 8000:8000 2>&1 >/dev/null &
    
  2. Serve エンドポイントにプロンプトを送信します。

    curl -X POST http://localhost:8000/v1/generate -H "Content-Type: application/json" -d '{"prompt": "What are the top 5 most popular programming languages? Be brief.", "max_tokens": 1024}'
    

追加構成

必要に応じて、Ray Serve フレームワークでサポートされている次のモデル提供リソースと手法を構成できます。

RayService をデプロイする

このチュートリアルのモデルは、RayService カスタム リソースを使用してデプロイできます。

  1. このチュートリアルで作成した RayCluster カスタム リソースを削除します。

    kubectl --namespace ${NAMESPACE} delete raycluster/vllm-tpu
    
  2. RayService カスタム リソースを作成してモデルをデプロイします。

    Llama-3-8B-Instruct

    1. ray-service.tpu-v5e-singlehost.yaml マニフェストを調べます。

      apiVersion: ray.io/v1
      kind: RayService
      metadata:
        name: vllm-tpu
      spec:
        serveConfigV2: |
          applications:
            - name: llm
              import_path: ai-ml.gke-ray.rayserve.llm.tpu.serve_tpu:model
              deployments:
              - name: VLLMDeployment
                num_replicas: 1
              runtime_env:
                working_dir: "https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/archive/main.zip"
                env_vars:
                  MODEL_ID: "$MODEL_ID"
                  MAX_MODEL_LEN: "$MAX_MODEL_LEN"
                  DTYPE: "$DTYPE"
                  TOKENIZER_MODE: "$TOKENIZER_MODE"
                  TPU_CHIPS: "8"
        rayClusterConfig:
          headGroupSpec:
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                - name: ray-head
                  image: $VLLM_IMAGE
                  imagePullPolicy: IfNotPresent
                  ports:
                  - containerPort: 6379
                    name: gcs
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                  resources:
                    limits:
                      cpu: "2"
                      memory: 8G
                    requests:
                      cpu: "2"
                      memory: 8G
                  volumeMounts:
                  - name: gcs-fuse-csi-ephemeral
                    mountPath: /data
                  - name: dshm
                    mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
          workerGroupSpecs:
          - groupName: tpu-group
            replicas: 1
            minReplicas: 1
            maxReplicas: 1
            numOfHosts: 1
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                  - name: ray-worker
                    image: $VLLM_IMAGE
                    imagePullPolicy: IfNotPresent
                    resources:
                      limits:
                        cpu: "100"
                        google.com/tpu: "8"
                        ephemeral-storage: 40G
                        memory: 200G
                      requests:
                        cpu: "100"
                        google.com/tpu: "8"
                        ephemeral-storage: 40G
                        memory: 200G
                    env:
                      - name: JAX_PLATFORMS
                        value: "tpu"
                      - name: HUGGING_FACE_HUB_TOKEN
                        valueFrom:
                          secretKeyRef:
                            name: hf-secret
                            key: hf_api_token
                      - name: VLLM_XLA_CACHE_PATH
                        value: "/data"
                    volumeMounts:
                    - name: gcs-fuse-csi-ephemeral
                      mountPath: /data
                    - name: dshm
                      mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
                nodeSelector:
                  cloud.google.com/gke-tpu-accelerator: tpu-v5-lite-podslice
                  cloud.google.com/gke-tpu-topology: 2x4
    2. 次のようにマニフェストを適用します。

      envsubst < tpu/ray-service.tpu-v5e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
      

      envsubst コマンドは、マニフェスト内の環境変数を置き換えます。

      GKE は、2x4 トポロジに TPU v5e 単一ホストを含む workergroup を使用して RayService を作成します。

    Mistral-7B

    1. ray-service.tpu-v5e-singlehost.yaml マニフェストを調べます。

      apiVersion: ray.io/v1
      kind: RayService
      metadata:
        name: vllm-tpu
      spec:
        serveConfigV2: |
          applications:
            - name: llm
              import_path: ai-ml.gke-ray.rayserve.llm.tpu.serve_tpu:model
              deployments:
              - name: VLLMDeployment
                num_replicas: 1
              runtime_env:
                working_dir: "https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/archive/main.zip"
                env_vars:
                  MODEL_ID: "$MODEL_ID"
                  MAX_MODEL_LEN: "$MAX_MODEL_LEN"
                  DTYPE: "$DTYPE"
                  TOKENIZER_MODE: "$TOKENIZER_MODE"
                  TPU_CHIPS: "8"
        rayClusterConfig:
          headGroupSpec:
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                - name: ray-head
                  image: $VLLM_IMAGE
                  imagePullPolicy: IfNotPresent
                  ports:
                  - containerPort: 6379
                    name: gcs
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                  resources:
                    limits:
                      cpu: "2"
                      memory: 8G
                    requests:
                      cpu: "2"
                      memory: 8G
                  volumeMounts:
                  - name: gcs-fuse-csi-ephemeral
                    mountPath: /data
                  - name: dshm
                    mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
          workerGroupSpecs:
          - groupName: tpu-group
            replicas: 1
            minReplicas: 1
            maxReplicas: 1
            numOfHosts: 1
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                  - name: ray-worker
                    image: $VLLM_IMAGE
                    imagePullPolicy: IfNotPresent
                    resources:
                      limits:
                        cpu: "100"
                        google.com/tpu: "8"
                        ephemeral-storage: 40G
                        memory: 200G
                      requests:
                        cpu: "100"
                        google.com/tpu: "8"
                        ephemeral-storage: 40G
                        memory: 200G
                    env:
                      - name: JAX_PLATFORMS
                        value: "tpu"
                      - name: HUGGING_FACE_HUB_TOKEN
                        valueFrom:
                          secretKeyRef:
                            name: hf-secret
                            key: hf_api_token
                      - name: VLLM_XLA_CACHE_PATH
                        value: "/data"
                    volumeMounts:
                    - name: gcs-fuse-csi-ephemeral
                      mountPath: /data
                    - name: dshm
                      mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
                nodeSelector:
                  cloud.google.com/gke-tpu-accelerator: tpu-v5-lite-podslice
                  cloud.google.com/gke-tpu-topology: 2x4
    2. 次のようにマニフェストを適用します。

      envsubst < tpu/ray-service.tpu-v5e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
      

      envsubst コマンドは、マニフェスト内の環境変数を置き換えます。

      GKE は、2x4 トポロジに TPU v5e 単一ホストを含む workergroup を使用して RayService を作成します。

    Llama 3.1 70B

    1. ray-service.tpu-v6e-singlehost.yaml マニフェストを調べます。

      apiVersion: ray.io/v1
      kind: RayService
      metadata:
        name: vllm-tpu
      spec:
        serveConfigV2: |
          applications:
            - name: llm
              import_path: ai-ml.gke-ray.rayserve.llm.tpu.serve_tpu:model
              deployments:
              - name: VLLMDeployment
                num_replicas: 1
              runtime_env:
                working_dir: "https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/archive/main.zip"
                env_vars:
                  MODEL_ID: "$MODEL_ID"
                  MAX_MODEL_LEN: "$MAX_MODEL_LEN"
                  DTYPE: "$DTYPE"
                  TOKENIZER_MODE: "$TOKENIZER_MODE"
                  TPU_CHIPS: "8"
        rayClusterConfig:
          headGroupSpec:
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                - name: ray-head
                  image: $VLLM_IMAGE
                  imagePullPolicy: IfNotPresent
                  ports:
                  - containerPort: 6379
                    name: gcs
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  env:
                  - name: HUGGING_FACE_HUB_TOKEN
                    valueFrom:
                      secretKeyRef:
                        name: hf-secret
                        key: hf_api_token
                  - name: VLLM_XLA_CACHE_PATH
                    value: "/data"
                  resources:
                    limits:
                      cpu: "2"
                      memory: 8G
                    requests:
                      cpu: "2"
                      memory: 8G
                  volumeMounts:
                  - name: gcs-fuse-csi-ephemeral
                    mountPath: /data
                  - name: dshm
                    mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
          workerGroupSpecs:
          - groupName: tpu-group
            replicas: 1
            minReplicas: 1
            maxReplicas: 1
            numOfHosts: 1
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                  - name: ray-worker
                    image: $VLLM_IMAGE
                    imagePullPolicy: IfNotPresent
                    resources:
                      limits:
                        cpu: "100"
                        google.com/tpu: "8"
                        ephemeral-storage: 40G
                        memory: 200G
                      requests:
                        cpu: "100"
                        google.com/tpu: "8"
                        ephemeral-storage: 40G
                        memory: 200G
                    env:
                      - name: JAX_PLATFORMS
                        value: "tpu"
                      - name: HUGGING_FACE_HUB_TOKEN
                        valueFrom:
                          secretKeyRef:
                            name: hf-secret
                            key: hf_api_token
                      - name: VLLM_XLA_CACHE_PATH
                        value: "/data"
                    volumeMounts:
                    - name: gcs-fuse-csi-ephemeral
                      mountPath: /data
                    - name: dshm
                      mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
                nodeSelector:
                  cloud.google.com/gke-tpu-accelerator: tpu-v6e-slice
                  cloud.google.com/gke-tpu-topology: 2x4
    2. 次のようにマニフェストを適用します。

      envsubst < tpu/ray-service.tpu-v6e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
      

      envsubst コマンドは、マニフェスト内の環境変数を置き換えます。

    GKE は、Ray Serve アプリケーションがデプロイされ、後続の RayService カスタム リソースが作成される RayCluster カスタム リソースを作成します。

  3. RayService リソースのステータスを確認します。

    kubectl --namespace ${NAMESPACE} get rayservices/vllm-tpu
    

    Service のステータスが Running に変わるまで待ちます。

    NAME       SERVICE STATUS   NUM SERVE ENDPOINTS
    vllm-tpu   Running          1
    
  4. RayCluster ヘッドサービスの名前を取得します。

    SERVICE_NAME=$(kubectl --namespace=${NAMESPACE} get rayservices/vllm-tpu \
        --template={{.status.activeServiceStatus.rayClusterStatus.head.serviceName}})
    
  5. Ray ヘッドへの port-forwarding セッションを確立して、Ray ダッシュボードを表示します。

    pkill -f "kubectl .* port-forward .* 8265:8265"
    kubectl --namespace ${NAMESPACE} port-forward service/${SERVICE_NAME} 8265:8265 2>&1 >/dev/null &
    
  6. Ray ダッシュボードを表示します。

  7. モデルを提供する

  8. RayService リソースをクリーンアップします。

    kubectl --namespace ${NAMESPACE} delete rayservice/vllm-tpu
    

モデル構成で複数のモデルを作成する

モデルの構成は、複数のモデルを 1 つのアプリケーションに作成するための手法です。

このセクションでは、GKE クラスタを使用して、Llama 3 8B IT モデルと Gemma 7B IT モデルを 1 つのアプリケーションにコンポーズします。

  • 最初のモデルは、プロンプトで尋ねられた質問に回答するアシスタント モデルです。
  • 2 番目のモデルは、要約モデルです。アシスタント モデルの出力は、要約モデルの入力に連結されます。最終的な結果は、アシスタント モデルからのレスポンスの要約版です。
  1. 環境を設定します。

    export ASSIST_MODEL_ID=meta-llama/Meta-Llama-3-8B-Instruct
    export SUMMARIZER_MODEL_ID=google/gemma-7b-it
    
  2. Standard クラスタの場合は、単一ホストの TPU スライス ノードプールをさらに作成します。

    gcloud container node-pools create tpu-2 \
      --location=${COMPUTE_ZONE} \
      --cluster=${CLUSTER_NAME} \
      --machine-type=MACHINE_TYPE \
      --num-nodes=1
    

    MACHINE_TYPE は、次のいずれかのマシンタイプに置き換えます。

    • ct5lp-hightpu-8t: TPU v5e をプロビジョニングします。
    • ct6e-standard-8t: TPU v6e をプロビジョニングします。

    Autopilot クラスタは、必要なノードを自動的にプロビジョニングします。

  3. 使用する TPU のバージョンに基づいて RayService リソースをデプロイします。

    TPU v5e

    1. ray-service.tpu-v5e-singlehost.yaml マニフェストを調べます。

      apiVersion: ray.io/v1
      kind: RayService
      metadata:
        name: vllm-tpu
      spec:
        serveConfigV2: |
          applications:
          - name: llm
            route_prefix: /
            import_path:  ai-ml.gke-ray.rayserve.llm.model-composition.serve_tpu:multi_model
            deployments:
            - name: MultiModelDeployment
              num_replicas: 1
            runtime_env:
              working_dir: "https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/archive/main.zip"
              env_vars:
                ASSIST_MODEL_ID: "$ASSIST_MODEL_ID"
                SUMMARIZER_MODEL_ID: "$SUMMARIZER_MODEL_ID"
                TPU_CHIPS: "16"
                TPU_HEADS: "2"
        rayClusterConfig:
          headGroupSpec:
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                - name: ray-head
                  image: $VLLM_IMAGE
                  resources:
                    limits:
                      cpu: "2"
                      memory: 8G
                    requests:
                      cpu: "2"
                      memory: 8G
                  ports:
                  - containerPort: 6379
                    name: gcs-server
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  env:
                    - name: HUGGING_FACE_HUB_TOKEN
                      valueFrom:
                        secretKeyRef:
                          name: hf-secret
                          key: hf_api_token
                    - name: VLLM_XLA_CACHE_PATH
                      value: "/data"
                  volumeMounts:
                  - name: gcs-fuse-csi-ephemeral
                    mountPath: /data
                  - name: dshm
                    mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
          workerGroupSpecs:
          - replicas: 2
            minReplicas: 1
            maxReplicas: 2
            numOfHosts: 1
            groupName: tpu-group
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                - name: llm
                  image: $VLLM_IMAGE
                  env:
                    - name: HUGGING_FACE_HUB_TOKEN
                      valueFrom:
                        secretKeyRef:
                          name: hf-secret
                          key: hf_api_token
                    - name: VLLM_XLA_CACHE_PATH
                      value: "/data"
                  resources:
                    limits:
                      cpu: "100"
                      google.com/tpu: "8"
                      ephemeral-storage: 40G
                      memory: 200G
                    requests:
                      cpu: "100"
                      google.com/tpu: "8"
                      ephemeral-storage: 40G
                      memory: 200G
                  volumeMounts:
                  - name: gcs-fuse-csi-ephemeral
                    mountPath: /data
                  - name: dshm
                    mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
                nodeSelector:
                  cloud.google.com/gke-tpu-accelerator: tpu-v5-lite-podslice
                  cloud.google.com/gke-tpu-topology: 2x4
    2. 次のようにマニフェストを適用します。

      envsubst < model-composition/ray-service.tpu-v5e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
      

    TPU v6e

    1. ray-service.tpu-v6e-singlehost.yaml マニフェストを調べます。

      apiVersion: ray.io/v1
      kind: RayService
      metadata:
        name: vllm-tpu
      spec:
        serveConfigV2: |
          applications:
          - name: llm
            route_prefix: /
            import_path:  ai-ml.gke-ray.rayserve.llm.model-composition.serve_tpu:multi_model
            deployments:
            - name: MultiModelDeployment
              num_replicas: 1
            runtime_env:
              working_dir: "https://github.com/GoogleCloudPlatform/kubernetes-engine-samples/archive/main.zip"
              env_vars:
                ASSIST_MODEL_ID: "$ASSIST_MODEL_ID"
                SUMMARIZER_MODEL_ID: "$SUMMARIZER_MODEL_ID"
                TPU_CHIPS: "16"
                TPU_HEADS: "2"
        rayClusterConfig:
          headGroupSpec:
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                - name: ray-head
                  image: $VLLM_IMAGE
                  resources:
                    limits:
                      cpu: "2"
                      memory: 8G
                    requests:
                      cpu: "2"
                      memory: 8G
                  ports:
                  - containerPort: 6379
                    name: gcs-server
                  - containerPort: 8265
                    name: dashboard
                  - containerPort: 10001
                    name: client
                  - containerPort: 8000
                    name: serve
                  env:
                    - name: HUGGING_FACE_HUB_TOKEN
                      valueFrom:
                        secretKeyRef:
                          name: hf-secret
                          key: hf_api_token
                    - name: VLLM_XLA_CACHE_PATH
                      value: "/data"
                  volumeMounts:
                  - name: gcs-fuse-csi-ephemeral
                    mountPath: /data
                  - name: dshm
                    mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
          workerGroupSpecs:
          - replicas: 2
            minReplicas: 1
            maxReplicas: 2
            numOfHosts: 1
            groupName: tpu-group
            rayStartParams: {}
            template:
              metadata:
                annotations:
                  gke-gcsfuse/volumes: "true"
                  gke-gcsfuse/cpu-limit: "0"
                  gke-gcsfuse/memory-limit: "0"
                  gke-gcsfuse/ephemeral-storage-limit: "0"
              spec:
                serviceAccountName: $KSA_NAME
                containers:
                - name: llm
                  image: $VLLM_IMAGE
                  env:
                    - name: HUGGING_FACE_HUB_TOKEN
                      valueFrom:
                        secretKeyRef:
                          name: hf-secret
                          key: hf_api_token
                    - name: VLLM_XLA_CACHE_PATH
                      value: "/data"
                  resources:
                    limits:
                      cpu: "100"
                      google.com/tpu: "8"
                      ephemeral-storage: 40G
                      memory: 200G
                    requests:
                      cpu: "100"
                      google.com/tpu: "8"
                      ephemeral-storage: 40G
                      memory: 200G
                  volumeMounts:
                  - name: gcs-fuse-csi-ephemeral
                    mountPath: /data
                  - name: dshm
                    mountPath: /dev/shm
                volumes:
                - name: gke-gcsfuse-cache
                  emptyDir:
                    medium: Memory
                - name: dshm
                  emptyDir:
                    medium: Memory
                - name: gcs-fuse-csi-ephemeral
                  csi:
                    driver: gcsfuse.csi.storage.gke.io
                    volumeAttributes:
                      bucketName: $GSBUCKET
                      mountOptions: "implicit-dirs,file-cache:enable-parallel-downloads:true,file-cache:parallel-downloads-per-file:100,file-cache:max-parallel-downloads:-1,file-cache:download-chunk-size-mb:10,file-cache:max-size-mb:-1"
                nodeSelector:
                  cloud.google.com/gke-tpu-accelerator: tpu-v6e-slice
                  cloud.google.com/gke-tpu-topology: 2x4
    2. 次のようにマニフェストを適用します。

      envsubst < model-composition/ray-service.tpu-v6e-singlehost.yaml | kubectl --namespace ${NAMESPACE} apply -f -
      
  4. RayService リソースのステータスが Running に変わるまで待ちます。

    kubectl --namespace ${NAMESPACE} get rayservice/vllm-tpu
    

    出力は次のようになります。

    NAME       SERVICE STATUS   NUM SERVE ENDPOINTS
    vllm-tpu   Running          2
    

    この出力では、RUNNING ステータスは RayService リソースの準備ができていることを示します。

  5. GKE が Ray Serve アプリケーションの Service を作成したことを確認します。

    kubectl --namespace ${NAMESPACE} get service/vllm-tpu-serve-svc
    

    出力は次のようになります。

    NAME                 TYPE        CLUSTER-IP        EXTERNAL-IP   PORT(S)    AGE
    vllm-tpu-serve-svc   ClusterIP   ###.###.###.###   <none>        8000/TCP   ###
    
  6. Ray ヘッドへの port-forwarding セッションを確立します。

    pkill -f "kubectl .* port-forward .* 8000:8000"
    kubectl --namespace ${NAMESPACE} port-forward service/vllm-tpu-serve-svc 8000:8000 2>&1 >/dev/null &
    
  7. モデルにリクエストを送信します。

    curl -X POST http://localhost:8000/ -H "Content-Type: application/json" -d '{"prompt": "What is the most popular programming language for machine learning and why?", "max_tokens": 1000}'
    

    出力は次のようになります。

      {"text": [" used in various data science projects, including building machine learning models, preprocessing data, and visualizing results.\n\nSure, here is a single sentence summarizing the text:\n\nPython is the most popular programming language for machine learning and is widely used in data science projects, encompassing model building, data preprocessing, and visualization."]}
    

TPU イメージをビルドしてデプロイする

このチュートリアルでは、vLLM のホストされている TPU イメージを使用します。vLLM は、TPU の依存関係を含む必要な PyTorch XLA イメージ上に vLLM をビルドする Dockerfile.tpu イメージを提供します。ただし、独自の TPU イメージをビルドしてデプロイし、Docker イメージの内容をきめ細かく制御することもできます。

  1. このガイドのコンテナ イメージを保存する Docker リポジトリを作成します。

    gcloud artifacts repositories create vllm-tpu --repository-format=docker --location=${COMPUTE_REGION} && \
    gcloud auth configure-docker ${COMPUTE_REGION}-docker.pkg.dev
    
  2. vLLM リポジトリのクローンを作成します。

    git clone https://github.com/vllm-project/vllm.git
    cd vllm
    
  3. イメージをビルドします。

    docker build -f Dockerfile.tpu . -t vllm-tpu
    
  4. TPU イメージに Artifact Registry 名をタグ付けします。

    export VLLM_IMAGE=${COMPUTE_REGION}-docker.pkg.dev/${PROJECT_ID}/vllm-tpu/vllm-tpu:TAG
    docker tag vllm-tpu ${VLLM_IMAGE}
    

    TAG は、定義するタグの名前に置き換えます。タグを指定しない場合、Docker はデフォルトの latest タグを適用します。

  5. イメージを Artifact Registry に push します。

    docker push ${VLLM_IMAGE}
    

個々のリソースの削除

使用している既存のプロジェクトを削除しない場合は、リソースを個別に削除できます。

  1. RayCluster カスタム リソースを削除します。

    kubectl --namespace ${NAMESPACE} delete rayclusters vllm-tpu
    
  2. Cloud Storage バケットを削除します。

    gcloud storage rm -r gs://${GSBUCKET}
    
  3. Artifact Registry リポジトリを削除します。

    gcloud artifacts repositories delete vllm-tpu \
        --location=${COMPUTE_REGION}
    
  4. クラスタを削除します。

    gcloud container clusters delete ${CLUSTER_NAME} \
        --location=LOCATION
    

    LOCATION は、次のいずれかの環境変数に置き換えます。

    • Autopilot クラスタの場合は、COMPUTE_REGION を使用します。
    • Standard クラスタの場合は、COMPUTE_ZONE を使用します。

プロジェクトの削除

チュートリアルを新しいプロジェクトにデプロイした後、そのプロジェクトが不要になった場合は、次の手順で削除します。 Google Cloud

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

次のステップ