Run in Google Colab | View source on GitHub |
This notebook shows how to enrich data by using the Apache Beam enrichment transform with BigQuery. The enrichment transform is an Apache Beam turnkey transform that lets you enrich data by using a key-value lookup. This transform has the following features:
- The transform has a built-in Apache Beam handler that interacts with BigQuery data during enrichment.
- The enrichment transform uses client-side throttling to rate limit the requests. The default retry strategy uses exponential backoff. You can configure rate limiting to suit your use case.
This notebook demonstrates the following telecommunications company use case:
A telecom company wants to predict which customers are likely to cancel their subscriptions so that the company can proactively offer these customers incentives to stay. The example uses customer demographic data and usage data stored in BigQuery to enrich a stream of customer IDs. The enriched data is then used to predict the likelihood of customer churn.
Before you begin
Set up your environment and download dependencies.
Install Apache Beam
To use the enrichment transform with the built-in BigQuery handler, install the Apache Beam SDK version 2.57.0 or later.
pip install torch
pip install apache_beam[interactive,gcp]==2.57.0 --quiet
Import the following modules:
- Pub/Sub for streaming data
- BigQuery for enrichment
- Apache Beam for running the streaming pipeline
- PyTorch to predict customer churn
import datetime
import json
import math
from typing import Any
from typing import Dict
import torch
from google.cloud import pubsub_v1
from google.cloud import bigquery
from google.api_core.exceptions import Conflict
import apache_beam as beam
import apache_beam.runners.interactive.interactive_beam as ib
from apache_beam.ml.inference.base import KeyedModelHandler
from apache_beam.ml.inference.base import RunInference
from apache_beam.ml.inference.pytorch_inference import PytorchModelHandlerTensor
from apache_beam.options import pipeline_options
from apache_beam.runners.interactive.interactive_runner import InteractiveRunner
from apache_beam.transforms.enrichment import Enrichment
from apache_beam.transforms.enrichment_handlers.bigquery import BigQueryEnrichmentHandler
import pandas as pd
from sklearn.preprocessing import LabelEncoder
Authenticate with Google Cloud
This notebook reads data from Pub/Sub and BigQuery. To use your Google Cloud account, authenticate this notebook.
To prepare for this step, replace <PROJECT_ID>
with your Google Cloud project ID.
PROJECT_ID = "<PROJECT_ID>"
from google.colab import auth
auth.authenticate_user(project_id=PROJECT_ID)
Set up the BigQuery tables
Create sample BigQuery tables for this notebook.
- Replace
<DATASET_ID>
with the name of your BigQuery dataset. Only letters (uppercase or lowercase), numbers, and underscores are allowed. - If the dataset does not exist, a new dataset with this ID is created.
DATASET_ID = "<DATASET_ID>"
CUSTOMERS_TABLE_ID = f'{PROJECT_ID}.{DATASET_ID}.customers'
USAGE_TABLE_ID = f'{PROJECT_ID}.{DATASET_ID}.usage'
Create customer and usage tables, and insert fake data.
client = bigquery.Client(project=PROJECT_ID)
# Create dataset if it does not exist.
client.create_dataset(bigquery.Dataset(f"{PROJECT_ID}.{DATASET_ID}"), exists_ok=True)
print(f"Created dataset {DATASET_ID}")
# Prepare the fake customer data.
customer_data = {
'customer_id': [1, 2, 3, 4, 5],
'age': [35, 28, 45, 62, 22],
'plan': ['Gold', 'Silver', 'Bronze', 'Gold', 'Silver'],
'contract_length': [12, 24, 6, 36, 12]
}
customers_df = pd.DataFrame(customer_data)
# Insert customer data.
job_config = bigquery.LoadJobConfig(
schema=[
bigquery.SchemaField("customer_id", "INTEGER"),
bigquery.SchemaField("age", "INTEGER"),
bigquery.SchemaField("plan", "STRING"),
bigquery.SchemaField("contract_length", "INTEGER"),
],
write_disposition="WRITE_TRUNCATE",
)
job = client.load_table_from_dataframe(
customers_df, CUSTOMERS_TABLE_ID, job_config=job_config
)
job.result() # Wait for the job to complete.
print(f"Customers table created and populated: {CUSTOMERS_TABLE_ID}")
# Prepare the fake usage data.
usage_data = {
'customer_id': [1, 1, 2, 2, 3, 3, 4, 4, 5, 5],
'date': pd.to_datetime(['2024-09-01', '2024-10-01', '2024-09-01', '2024-10-01', '2024-09-01', '2024-10-01', '2024-09-01', '2024-10-01', '2024-09-01', '2024-10-01']),
'calls_made': [50, 65, 20, 18, 100, 110, 30, 28, 60, 70],
'data_usage_gb': [10, 12, 5, 4, 20, 22, 8, 7, 15, 18]
}
usage_df = pd.DataFrame(usage_data)
# Insert usage data.
job_config = bigquery.LoadJobConfig(
schema=[
bigquery.SchemaField("customer_id", "INTEGER"),
bigquery.SchemaField("date", "DATE"),
bigquery.SchemaField("calls_made", "INTEGER"),
bigquery.SchemaField("data_usage_gb", "FLOAT"),
],
write_disposition="WRITE_TRUNCATE",
)
job = client.load_table_from_dataframe(
usage_df, USAGE_TABLE_ID, job_config=job_config
)
job.result() # Wait for the job to complete.
print(f"Usage table created and populated: {USAGE_TABLE_ID}")
Train the model
Create sample data and train a simple model for churn prediction.
# Create fake training data
data = {
'customer_id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'age': [35, 28, 45, 62, 22, 38, 55, 25, 40, 30],
'plan': ['Gold', 'Silver', 'Bronze', 'Gold', 'Silver', 'Bronze', 'Gold', 'Silver', 'Bronze', 'Silver'],
'contract_length': [12, 24, 6, 36, 12, 18, 30, 12, 24, 18],
'avg_monthly_calls': [57.5, 19, 100, 30, 60, 45, 25, 70, 50, 35],
'avg_monthly_data_usage_gb': [11, 4.5, 20, 8, 15, 10, 7, 18, 12, 8],
'churned': [0, 0, 1, 0, 1, 0, 0, 1, 0, 1] # Target variable
}
plan_encoder = LabelEncoder()
plan_encoder.fit(data['plan'])
df = pd.DataFrame(data)
df['plan'] = plan_encoder.transform(data['plan'])
Preprocess the data:
- Convert the lists to tensors.
- Separate the features from the expected prediction.
features = ['age', 'plan', 'contract_length', 'avg_monthly_calls', 'avg_monthly_data_usage_gb']
target = 'churned'
X = torch.tensor(df[features].values, dtype=torch.float)
Y = torch.tensor(df[target], dtype=torch.float)
Define a model that has five input features and predicts a single value.
def build_model(n_inputs, n_outputs):
"""build_model builds and returns a model that takes
`n_inputs` features and predicts `n_outputs` value"""
return torch.nn.Sequential(
torch.nn.Linear(n_inputs, 8),
torch.nn.ReLU(),
torch.nn.Linear(8, 16),
torch.nn.ReLU(),
torch.nn.Linear(16, n_outputs),
torch.nn.Sigmoid())
Train the model.
model = build_model(n_inputs=5, n_outputs=1)
loss_fn = torch.nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters())
for epoch in range(1000):
print(f'Epoch {epoch}: ---')
optimizer.zero_grad()
for i in range(len(X)):
pred = model(X[i])
loss = loss_fn(pred, Y[i].unsqueeze(0))
loss.backward()
optimizer.step()
Save the model to the STATE_DICT_PATH
variable.
STATE_DICT_PATH = './model.pth'
torch.save(model.state_dict(), STATE_DICT_PATH)
Publish messages to Pub/Sub
Create the Pub/Sub topic and subscription to use for data streaming.
# Replace <TOPIC_NAME> with the name of your Pub/Sub topic.
TOPIC = "<TOPIC_NAME>"
# Replace <SUBSCRIPTION_PATH> with the subscription for your topic.
SUBSCRIPTION = "<SUBSCRIPTION_PATH>"
from google.api_core.exceptions import AlreadyExists
publisher = pubsub_v1.PublisherClient()
topic_path = publisher.topic_path(PROJECT_ID, TOPIC)
try:
topic = publisher.create_topic(request={"name": topic_path})
print(f"Created topic: {topic.name}")
except AlreadyExists:
print(f"Topic {topic_path} already exists.")
subscriber = pubsub_v1.SubscriberClient()
subscription_path = subscriber.subscription_path(PROJECT_ID, SUBSCRIPTION)
try:
subscription = subscriber.create_subscription(
request={"name": subscription_path, "topic": topic_path}
)
print(f"Created subscription: {subscription.name}")
except AlreadyExists:
print(f"Subscription {subscription_path} already exists.")
Use the Pub/Sub Python client to publish messages.
messages = [
{'customer_id': i}
for i in range(1, 6)
]
for message in messages:
data = json.dumps(message).encode('utf-8')
publish_future = publisher.publish(topic_path, data)
Use the BigQuery enrichment handler
The BigQueryEnrichmentHandler
is a built-in handler included in the Apache Beam SDK versions 2.57.0 and later.
Configure the BigQueryEnrichmentHandler
handler with the following parameters.
Required parameters
The following parameters are required.
project
(str): The Google Cloud project ID for the BigQuery table
You must also provide one of the following combinations:
table_name
,row_restriction_template
, andfields
table_name
,row_restriction_template
, andcondition_value_fn
query_fn
Optional parameters
The following parameters are optional.
table_name
(str): The fully qualified BigQuery table name in the formatproject.dataset.table
row_restriction_template
(str): A template string for theWHERE
clause in the BigQuery query with placeholders ({}
) to dynamically filter rows based on input datafields
(Optional[List[str]]): A list of field names present in the inputbeam.Row
. These fields names are used to construct theWHERE
clause ifcondition_value_fn
is not provided.column_names
(Optional[List[str]]): The names of columns to select from the BigQuery table. If not provided, all columns (*
) are selected.condition_value_fn
(Optional[Callable[[beam.Row], List[Any]]]): A function that takes abeam.Row
and returns a list of values to populate in the placeholder{}
of theWHERE
clause in the queryquery_fn
(Optional[Callable[[beam.Row], str]]): A function that takes abeam.Row
and returns a complete BigQuery SQL query stringmin_batch_size
(int): The minimum number of rows to batch together when querying BigQuery. Defaults to1
ifquery_fn
is not specified.max_batch_size
(int): The maximum number of rows to batch together. Defaults to10,000
ifquery_fn
is not specified.
Parameter requirements
When you use parameters, consider the following requirements.
- You can't define the
min_batch_size
andmax_batch_size
parameters if you provide thequery_fn
parameter. - You must provide either the
fields
parameter or thecondition_value_fn
parameter for query construction if you don't provide thequery_fn
parameter. - You must grant the appropriate permissions to access BigQuery.
Create handlers
In this example, you create two handlers:
- One for customer data that specifies
table_name
androw_restriction_template
- One for usage data that uses a custom aggregation query by using the
query_fn
function
These handlers are used in the Enrichment transforms in this pipeline to fetch and join data from BigQuery with the streaming data.
user_data_handler = BigQueryEnrichmentHandler(
project=PROJECT_ID,
table_name=f"`{CUSTOMERS_TABLE_ID}`",
row_restriction_template='customer_id = {}',
fields=['customer_id']
)
# Define the SQL query for usage data aggregation.
usage_data_query_template = f"""
WITH monthly_aggregates AS (
SELECT
customer_id,
DATE_TRUNC(date, MONTH) as month,
SUM(calls_made) as total_calls,
SUM(data_usage_gb) as total_data_usage_gb
FROM
`{USAGE_TABLE_ID}`
WHERE
customer_id = @customer_id
GROUP BY
customer_id, month
)
SELECT
customer_id,
AVG(total_calls) as avg_monthly_calls,
AVG(total_data_usage_gb) as avg_monthly_data_usage_gb
FROM
monthly_aggregates
GROUP BY
customer_id
"""
def usage_data_query_fn(row: beam.Row) -> str:
return usage_data_query_template.replace('@customer_id', str(row.customer_id))
usage_data_handler = BigQueryEnrichmentHandler(
project=PROJECT_ID,
query_fn=usage_data_query_fn
)
In this example:
- The
user_data_handler
handler uses thetable_name
,row_restriction_template
, andfields
parameter combination to fetch customer data. - The
usage_data_handler
handler uses thequery_fn
parameter to execute a more complex query that aggregates usage data.
Use the PytorchModelHandlerTensor
interface to run inference
Define functions to convert enriched data to the tensor format for the model.
def convert_row_to_tensor(customer_data):
import pandas as pd
customer_df = pd.DataFrame([customer_data[1].as_dict()])
customer_df['plan'] = plan_encoder.transform(customer_df['plan'])
return (customer_data[0], torch.tensor(customer_df[features].values, dtype=torch.float))
keyed_model_handler = KeyedModelHandler(PytorchModelHandlerTensor(
state_dict_path=STATE_DICT_PATH,
model_class=build_model,
model_params={'n_inputs':5, 'n_outputs':1}
)).with_preprocess_fn(convert_row_to_tensor)
Define a DoFn
to format the output.
class PostProcessor(beam.DoFn):
def process(self, element, *args, **kwargs):
print('Customer %d churn risk: %s' % (element[0], "High" if element[1].inference[0].item() > 0.5 else "Low"))
Run the pipeline
Configure the pipeline to run in streaming mode.
options = pipeline_options.PipelineOptions()
options.view_as(pipeline_options.StandardOptions).streaming = True # Streaming mode is set True
Pub/Sub sends the data in bytes. Convert the data to beam.Row
objects by using a DoFn
.
class DecodeBytes(beam.DoFn):
"""
The DecodeBytes `DoFn` converts the data read from Pub/Sub to `beam.Row`.
First, decode the encoded string. Convert the output to
a `dict` with `json.loads()`, which is used to create a `beam.Row`.
"""
def process(self, element, *args, **kwargs):
element_dict = json.loads(element.decode('utf-8'))
yield beam.Row(**element_dict)
Use the following code to run the pipeline.
with beam.Pipeline(options=options) as p:
_ = (p
| "Read from Pub/Sub" >> beam.io.ReadFromPubSub(subscription=f"projects/{PROJECT_ID}/subscriptions/{SUBSCRIPTION}")
| "ConvertToRow" >> beam.ParDo(DecodeBytes())
| "Enrich with customer data" >> Enrichment(user_data_handler)
| "Enrich with usage data" >> Enrichment(usage_data_handler)
| "Key data" >> beam.Map(lambda x: (x.customer_id, x))
| "RunInference" >> RunInference(keyed_model_handler)
| "Format Output" >> beam.ParDo(PostProcessor())
)