Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Dataflow è basato sul progetto open source
Apache Beam. Puoi
utilizzare l'SDK Apache Beam per creare pipeline per Dataflow.
Questo documento elenca alcune risorse per iniziare a utilizzare la programmazione di Apache Beam.
Inizia
Installa l'SDK Apache Beam:
spiega come installare l'SDK Apache Beam per eseguire le
pipeline in Dataflow.
Crea una pipeline Java: mostra come creare una pipeline con l'SDK Apache Beam Java ed eseguirla in Dataflow.
Crea una pipeline Python:
spiega come creare una pipeline con l'SDK Apache Beam per Python ed eseguirla in Dataflow.
Crea una pipeline Go: mostra come creare una pipeline con l'SDK Apache Beam Go ed eseguirla in Dataflow.
Scopri Apache Beam
Puoi utilizzare le seguenti pagine del sito web di Apache Beam per scoprire di più sulla programmazione di Apache Beam.
Tour di Apache Beam:
una guida didattica che puoi utilizzare per familiarizzare con Apache Beam.
Le unità didattiche sono accompagnate da esempi di codice che puoi eseguire e modificare.
Apache Beam Playground:
un ambiente interattivo per provare le trasformazioni e gli esempi di Apache Beam
senza dover installare Apache Beam nel tuo ambiente.
Crea la tua pipeline:
spiega la procedura di utilizzo delle classi negli SDK Apache Beam e
i passaggi necessari per creare una pipeline.
Sviluppare pipeline
Pianifica la pipeline: scopri come pianificare la pipeline prima di iniziare a sviluppare il codice.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[[["\u003cp\u003eDataflow utilizes the open-source Apache Beam project, allowing users to construct pipelines with the Apache Beam SDK.\u003c/p\u003e\n"],["\u003cp\u003eResources are provided for installing the Apache Beam SDK, guiding users on how to run their pipelines within the Dataflow service.\u003c/p\u003e\n"],["\u003cp\u003eThe Apache Beam website offers resources covering pipeline design, creation, and testing best practices, using the classes in the Apache Beam SDK.\u003c/p\u003e\n"],["\u003cp\u003eThe Apache Beam playground offers an interactive environment to try out the Apache Beam transforms without needing to install Apache Beam.\u003c/p\u003e\n"],["\u003cp\u003eExample streaming pipelines, including word extraction, word count, and wordcap, are available on the Apache Beam GitHub repository in Java, Python, and Go.\u003c/p\u003e\n"]]],[],null,["# Use Apache Beam to build pipelines\n\nDataflow is built on the open source\n[Apache Beam](https://beam.apache.org/) project. You can\nuse the Apache Beam SDK to build pipelines for Dataflow.\nThis document lists some resources for getting started with Apache Beam\nprogramming.\n\nGet started\n-----------\n\n- [Install the Apache Beam SDK](/dataflow/docs/guides/installing-beam-sdk):\n Shows how to install the Apache Beam SDK so that you can run your\n pipelines in Dataflow.\n\n- [Create a Java pipeline](/dataflow/docs/guides/create-pipeline-java): Shows\n how to create a pipeline with the Apache Beam Java SDK and run the\n pipeline in Dataflow.\n\n- [Create a Python pipeline](/dataflow/docs/guides/create-pipeline-python):\n Shows how to create a pipeline with the Apache Beam Python SDK and run the\n pipeline in Dataflow.\n\n- [Create a Go pipeline](/dataflow/docs/guides/create-pipeline-go): Shows\n how to create a pipeline with the Apache Beam Go SDK and run the pipeline\n in Dataflow.\n\nLearn Apache Beam\n-----------------\n\nYou can use the following pages on the Apache Beam website to learn about\nApache Beam programming.\n\n- [Apache Beam programming guide](https://beam.apache.org/documentation/programming-guide/):\n Provides guidance for using the Apache Beam SDK classes to build and test\n your pipeline.\n\n- [Tour of Apache Beam](https://tour.beam.apache.org/):\n A learning guide you can use to familiarize yourself with Apache Beam.\n Learning units are accompanied by code examples that you can run and modify.\n\n- [Apache Beam playground](https://play.beam.apache.org/):\n An interactive environment to try out Apache Beam transforms and examples\n without having to install Apache Beam in your environment.\n\n- [Create your pipeline](https://beam.apache.org/documentation/pipelines/create-your-pipeline/):\n Explains the mechanics of using the classes in the Apache Beam SDKs and\n the necessary steps needed to build a pipeline.\n\nDevelop pipelines\n-----------------\n\n- [Plan your pipeline](/dataflow/docs/guides/plan-pipelines): Learn how to plan\n your pipeline before you begin code development.\n\n- [Develop and test pipelines](/dataflow/docs/guides/plan-pipelines): Learn best\n practices for developing and testing your Dataflow pipeline.\n\n- [Streaming pipelines](/dataflow/docs/concepts/streaming-pipelines): Learn\n about important design considerations for streaming pipelines, including\n windows, triggers, and watermarks.\n\nCode examples\n-------------\n\nYou can use the following examples from the Apache Beam GitHub to start\nbuilding a streaming pipeline:\n\n- [Streaming word extraction](https://github.com/apache/beam/blob/master/examples/java/src/main/java/org/apache/beam/examples/complete/StreamingWordExtract.java) (Java)\n- [Streaming word count](https://github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/streaming_wordcount.py) (Python), and\n- [`streaming_wordcap`](https://github.com/apache/beam/blob/master/sdks/go/examples/streaming_wordcap/wordcap.go) (Go).\n\nWhat's next\n-----------\n\n- [Deploy Dataflow pipelines](/dataflow/docs/guides/deploying-a-pipeline).\n- [Use the Dataflow job monitoring interface](/dataflow/docs/guides/monitoring-overview)."]]