Lire des données depuis Apache Iceberg vers Dataflow

Pour lire des données d'Apache Iceberg dans Dataflow, utilisez le connecteur d'E/S géré.

Les E/S gérées sont compatibles avec les fonctionnalités suivantes pour Apache Iceberg:

Catalogues
Fonctionnalités de lecture Lecture par lots
Capacités d'écriture

Pour les tables BigQuery pour Apache Iceberg, utilisez le connecteur BigQueryIO avec l'API BigQuery Storage. La table doit déjà exister. La création de tables dynamiques n'est pas prise en charge.

Dépendances

Ajoutez les dépendances suivantes au projet :

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

Exemple

L'exemple suivant lit une table Apache Iceberg et écrit les données dans des fichiers texte.

Java

Pour vous authentifier auprès de Dataflow, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import com.google.common.collect.ImmutableMap;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.values.PCollectionRowTuple;
import org.apache.beam.sdk.values.TypeDescriptors;

public class ApacheIcebergRead {

  static final String CATALOG_TYPE = "hadoop";

  public interface Options extends PipelineOptions {
    @Description("The URI of the Apache Iceberg warehouse location")
    String getWarehouseLocation();

    void setWarehouseLocation(String value);

    @Description("Path to write the output file")
    String getOutputPath();

    void setOutputPath(String value);

    @Description("The name of the Apache Iceberg catalog")
    String getCatalogName();

    void setCatalogName(String value);

    @Description("The name of the table to write to")
    String getTableName();

    void setTableName(String value);
  }

  public static void main(String[] args) {

    // Parse the pipeline options passed into the application. Example:
    //   --runner=DirectRunner --warehouseLocation=$LOCATION --catalogName=$CATALOG \
    //   --tableName= $TABLE_NAME --outputPath=$OUTPUT_FILE
    // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    Pipeline pipeline = Pipeline.create(options);

    // Configure the Iceberg source I/O
    Map catalogConfig = ImmutableMap.<String, Object>builder()
        .put("warehouse", options.getWarehouseLocation())
        .put("type", CATALOG_TYPE)
        .build();

    ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()
        .put("table", options.getTableName())
        .put("catalog_name", options.getCatalogName())
        .put("catalog_properties", catalogConfig)
        .build();

    // Build the pipeline.
    pipeline.apply(Managed.read(Managed.ICEBERG).withConfig(config))
        .getSinglePCollection()
        // Format each record as a string with the format 'id:name'.
        .apply(MapElements
            .into(TypeDescriptors.strings())
            .via((row -> {
              return String.format("%d:%s",
                  row.getInt64("id"),
                  row.getString("name"));
            })))
        // Write to a text file.
        .apply(
            TextIO.write()
                .to(options.getOutputPath())
                .withNumShards(1)
                .withSuffix(".txt"));

    pipeline.run().waitUntilFinish();
  }
}

Étape suivante