Leer datos de Apache Iceberg en Dataflow

Para leer datos de Apache Iceberg en Dataflow, usa el conector de E/S gestionado.

La E/gestionada admite las siguientes funciones de Apache Iceberg:

Catálogos
  • Hadoop
  • Hive
  • Catálogos basados en REST
  • Metastore de BigQuery (requiere el SDK de Apache Beam 2.62.0 o una versión posterior si no se usa Runner v2)
Funciones de lectura Lectura por lotes
Funciones de escritura

En el caso de las tablas de BigQuery para Apache Iceberg, usa el conector BigQueryIO con la API Storage de BigQuery. La tabla ya debe existir. No se admite la creación de tablas dinámicas.

Dependencias

Añade las siguientes dependencias a tu proyecto:

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

Ejemplo

En el siguiente ejemplo se leen datos de una tabla de Apache Iceberg y se escriben en archivos de texto.

Java

Para autenticarte en Dataflow, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import com.google.common.collect.ImmutableMap;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.values.PCollectionRowTuple;
import org.apache.beam.sdk.values.TypeDescriptors;

public class ApacheIcebergRead {

  static final String CATALOG_TYPE = "hadoop";

  public interface Options extends PipelineOptions {
    @Description("The URI of the Apache Iceberg warehouse location")
    String getWarehouseLocation();

    void setWarehouseLocation(String value);

    @Description("Path to write the output file")
    String getOutputPath();

    void setOutputPath(String value);

    @Description("The name of the Apache Iceberg catalog")
    String getCatalogName();

    void setCatalogName(String value);

    @Description("The name of the table to write to")
    String getTableName();

    void setTableName(String value);
  }

  public static void main(String[] args) {

    // Parse the pipeline options passed into the application. Example:
    //   --runner=DirectRunner --warehouseLocation=$LOCATION --catalogName=$CATALOG \
    //   --tableName= $TABLE_NAME --outputPath=$OUTPUT_FILE
    // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    Pipeline pipeline = Pipeline.create(options);

    // Configure the Iceberg source I/O
    Map catalogConfig = ImmutableMap.<String, Object>builder()
        .put("warehouse", options.getWarehouseLocation())
        .put("type", CATALOG_TYPE)
        .build();

    ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()
        .put("table", options.getTableName())
        .put("catalog_name", options.getCatalogName())
        .put("catalog_properties", catalogConfig)
        .build();

    // Build the pipeline.
    pipeline.apply(Managed.read(Managed.ICEBERG).withConfig(config))
        .getSinglePCollection()
        // Format each record as a string with the format 'id:name'.
        .apply(MapElements
            .into(TypeDescriptors.strings())
            .via((row -> {
              return String.format("%d:%s",
                  row.getInt64("id"),
                  row.getString("name"));
            })))
        // Write to a text file.
        .apply(
            TextIO.write()
                .to(options.getOutputPath())
                .withNumShards(1)
                .withSuffix(".txt"));

    pipeline.run().waitUntilFinish();
  }
}

Siguientes pasos