Utilizzare l'interfaccia di monitoraggio dei job Dataflow
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Quando esegui la pipeline utilizzando Dataflow,
puoi visualizzare il job e tutti gli altri utilizzando l'interfaccia
di monitoraggio di Dataflow. L'interfaccia di monitoraggio ti consente di visualizzare e
interagire con i tuoi job Dataflow.
Puoi accedere all'interfaccia di monitoraggio di Dataflow in
Google Cloud console.
Le attività che puoi eseguire utilizzando l'interfaccia di monitoraggio includono quanto segue:
Visualizza un elenco dei job in esecuzione, completati e non riusciti.
Visualizza una rappresentazione grafica delle fasi di un job e dell'avanzamento di ciascuna fase.
Visualizza i grafici delle metriche dei job, come aggiornamento dei dati, utilizzo delle risorse e
richieste I/O.
Monitora il costo stimato di un job.
Visualizza i log della pipeline.
Identifica i passaggi che potrebbero causare ritardi nella pipeline.
Identifica le cause della latenza nelle sorgenti e nei sink.
Comprendere gli errori della pipeline.
Componenti dell'interfaccia di monitoraggio
L'interfaccia di monitoraggio contiene i seguenti visualizzatori e grafici:
Un elenco di tutti i job Dataflow in esecuzione e di tutti i job eseguiti negli ultimi 30 giorni, insieme a stato, regione, tempo trascorso e altre informazioni.
Una rappresentazione grafica di una pipeline. Il grafico dei job fornisce anche un riepilogo del job, un log del job e informazioni su ogni passaggio della pipeline.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[[["\u003cp\u003eThe Dataflow monitoring interface allows users to view and interact with their Dataflow jobs directly from the Google Cloud console.\u003c/p\u003e\n"],["\u003cp\u003eUsers can track running, completed, and failed jobs, alongside a graphical representation of a job's stages and its progress.\u003c/p\u003e\n"],["\u003cp\u003eThe interface provides job metrics like data freshness, resource utilization, and estimated costs, as well as pipeline logs and potential error sources.\u003c/p\u003e\n"],["\u003cp\u003eThe monitoring interface includes a project dashboard, job list, job graph, execution details, and cost estimation, and also provides recommendations for job performance and error troubleshooting.\u003c/p\u003e\n"],["\u003cp\u003eThe monitoring interface can show data samples of each step of a pipeline.\u003c/p\u003e\n"]]],[],null,["# Use the Dataflow job monitoring interface\n\nWhen you run your pipeline by using Dataflow,\nyou can view that job and any others by using the Dataflow monitoring\ninterface. The monitoring interface lets you see and\ninteract with your Dataflow jobs.\n\nYou can access the Dataflow monitoring interface in the\n[Google Cloud console](https://console.cloud.google.com/).\n\nTasks that you can perform by using the monitoring interface include the\nfollowing:\n\n- See a list of running, completed, and failed jobs.\n- View a graphical representation of a job's stages and the progress of each stage\n- View graphs of job metrics, such as data freshness, resource utilization, and I/O requests.\n- Monitor the estimated cost of a job.\n- View pipeline logs.\n- Identify which steps might cause pipeline lag.\n- Identify causes of latency in your sources and sinks.\n- Understand pipeline errors.\n\n| **Note:** Sometimes job data is intermittently unavailable. When data is missing, gaps appear in the job monitoring charts.\n\nMonitoring interface components\n-------------------------------\n\nThe monitoring interface contains the following visualizers and charts:\n\n[Project monitoring dashboard](/dataflow/docs/guides/project-monitoring)\n: A dashboard that monitors your Dataflow jobs at the project\n level.\n\n[Jobs list](/dataflow/docs/guides/jobs-list)\n: A list of all running Dataflow jobs and all jobs run within the\n last 30 days, along with their status, region, elapsed time, and other\n information.\n\n[Job graph](/dataflow/docs/guides/job-graph)\n: A graphical representation of a pipeline. The job graph also provides a job\n summary, a job log, and information about each step in the pipeline.\n\n[Execution details](/dataflow/docs/concepts/execution-details)\n: Shows the execution stages of a job, data freshness for streaming jobs, and\n worker progress for batch jobs.\n\n[Job metrics](/dataflow/docs/guides/using-monitoring-intf)\n: Charts that display metrics over the duration of a job.\n\n[Estimated cost](/dataflow/docs/guides/estimated-cost)\n: The estimated cost of your Dataflow job, based on resource\n usage metrics.\n\n[Recommendations](/dataflow/docs/guides/recommendations)\n: Recommendations for improving job performance, reducing cost, and\n troubleshooting errors.\n\n[Autoscaling](/dataflow/docs/guides/autoscaling-metrics)\n: A set of charts that help you to understand the autoscaling behavior of\n streaming jobs.\n\n[Pipeline logs](/dataflow/docs/guides/logging)\n: Logs emitted by your pipeline and by the Dataflow service.\n\n[Data sampling](/dataflow/docs/guides/data-sampling)\n: A tool that lets you observe sampled data at each step of a pipeline.\n\nWhat's next\n-----------\n\n- Use [Cloud Monitoring](/dataflow/docs/guides/using-cloud-monitoring) to create alerts and view Dataflow metrics, including custom metrics\n- Learn more about [building production-ready data pipelines](/architecture/building-production-ready-data-pipelines-using-dataflow-monitoring)\n- Learn how to [troubleshoot your pipeline](/dataflow/docs/guides/troubleshooting-your-pipeline?)"]]