Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Questa pagina fornisce informazioni di base su come funzionano le GPU con Dataflow, incluse informazioni sui prerequisiti e sui tipi di GPU supportati.
L'utilizzo delle GPU nei job Dataflow ti consente di accelerare alcune attività di elaborazione dei dati. Le GPU possono eseguire determinati calcoli più velocemente
delle CPU. Questi calcoli sono in genere numerici o di algebra lineare,
spesso utilizzati nei casi d'uso di elaborazione delle immagini e machine learning. Il
grado di miglioramento delle prestazioni varia in base al caso d'uso, al tipo di calcolo
e alla quantità di dati elaborati.
Prerequisiti per l'utilizzo delle GPU in Dataflow
Per utilizzare le GPU con il job Dataflow, devi utilizzare Runner v2.
Dataflow esegue il codice utente nelle VM worker all'interno di un container Docker.
Queste VM worker eseguono Container-Optimized OS.
Affinché i job Dataflow utilizzino le GPU, devi soddisfare i seguenti prerequisiti:
I driver GPU sono installati sulle VM worker e accessibili al container Docker. Per saperne di più, consulta
Installare i driver GPU.
Per informazioni sulle regioni e sulle zone disponibili per le GPU, consulta la sezione
Disponibilità delle GPU per regioni e zone
nella documentazione di Compute Engine.
Workload consigliati
La seguente tabella fornisce suggerimenti sul tipo di GPU da utilizzare per
diversi carichi di lavoro. Gli esempi nella tabella sono solo suggerimenti e devi eseguire test nel tuo ambiente per determinare il tipo di GPU appropriato per il tuo workload.
Per informazioni più dettagliate sulle dimensioni della memoria GPU, sulla disponibilità delle funzionalità e sui tipi di workload ideali per i diversi modelli di GPU, consulta il grafico di confronto generale nella pagina Piattaforme GPU.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[[["\u003cp\u003eDataflow jobs using GPUs can accelerate data processing, especially for numeric or linear algebra computations like those in image processing and machine learning.\u003c/p\u003e\n"],["\u003cp\u003eUsing GPUs in Dataflow requires Dataflow Runner v2 and incurs charges detailed on the Dataflow pricing page.\u003c/p\u003e\n"],["\u003cp\u003ePrerequisites for GPU usage include having GPU drivers installed on worker VMs and GPU libraries installed in the custom container image.\u003c/p\u003e\n"],["\u003cp\u003eDataflow supports several NVIDIA GPU types, including L4, A100 (40 GB and 80 GB), Tesla T4, P4, V100, and P100, each suited for different workload sizes and types.\u003c/p\u003e\n"],["\u003cp\u003eThe boot disk size for GPU containers should be increased to at least 50 gigabytes to prevent running out of disk space, due to the large nature of these containers.\u003c/p\u003e\n"]]],[],null,["# Dataflow support for GPUs\n\n\u003cbr /\u003e\n\n| **Note:** The following considerations apply to this GA offering:\n|\n| - Jobs that use GPUs incur charges as specified in the Dataflow [pricing page](/dataflow/pricing).\n| - To use GPUs, your Dataflow job must use [Dataflow Runner v2](/dataflow/docs/runner-v2).\n\n\u003cbr /\u003e\n\nThis page provides background information on how GPUs work with\nDataflow, including information about prerequisites and supported\nGPU types.\n\nUsing GPUs in Dataflow jobs lets you accelerate\nsome data processing tasks. GPUs can perform certain computations faster\nthan CPUs. These computations are usually numeric or linear algebra,\noften used in image processing and machine learning use cases. The\nextent of performance improvement varies by the use case, type of computation,\nand amount of data processed.\n\nPrerequisites for using GPUs in Dataflow\n----------------------------------------\n\n\n- To use GPUs with your Dataflow job, you must use Runner v2.\n- Dataflow runs user code in worker VMs inside a Docker container. These worker VMs run [Container-Optimized OS](/container-optimized-os/docs). For Dataflow jobs to use GPUs, you need the following prerequisites:\n - GPU drivers are installed on worker VMs and accessible to the Docker container. For more information, see [Install GPU drivers](/dataflow/docs/gpu/use-gpus#drivers).\n - GPU libraries required by your pipeline, such as [NVIDIA CUDA-X libraries](https://developer.nvidia.com/gpu-accelerated-libraries) or the [NVIDIA CUDA Toolkit](https://developer.nvidia.com/cuda-toolkit), are installed in the custom container image. For more information, see [Configure your container image](/dataflow/docs/gpu/use-gpus#container-image).\n- Because GPU containers are typically large, to avoid [running out of disk space](/dataflow/docs/guides/common-errors#no-space-left), increase the default [boot disk size](/dataflow/docs/reference/pipeline-options#worker-level_options) to 50 gigabytes or more.\n\n\u003cbr /\u003e\n\nPricing\n-------\n\nJobs using GPUs incur charges as specified in the Dataflow\n[pricing page](/dataflow/pricing).\n\nAvailability\n------------\n\nThe following GPU types are supported with Dataflow:\n\nFor more information about each GPU type, including performance data, see\n[Compute Engine GPU platforms](/compute/docs/gpus).\n\nFor information about available regions and zones for GPUs, see\n[GPU regions and zones availability](/compute/docs/gpus/gpu-regions-zones)\nin the Compute Engine documentation.\n\n### Recommended workloads\n\nThe following table provides recommendations for which type of GPU to use for\ndifferent workloads. The examples in the table are suggestions only, and you\nneed to test in your own environment to determine the appropriate GPU type for\nyour workload.\n\nFor more detailed information about GPU memory size, feature availability, and\nideal workload types for different GPU models, see the\n[General comparison chart](/compute/docs/gpus#general_comparison_chart)\non the GPU platforms page.\n\nWhat's next\n-----------\n\n- See an example of a [developer workflow for building pipelines that use GPUs](/dataflow/docs/gpu/develop-with-gpus).\n- Learn how to [run an Apache Beam pipeline on Dataflow with GPUs](/dataflow/docs/gpu/use-gpus).\n- Work through [Processing Landsat satellite images with GPUs](/dataflow/docs/samples/satellite-images-gpus)."]]