检测露骨内容(安全搜索)

安全搜索检测功能可检测图片内的露骨内容,如成人内容或暴力内容。此功能使用五个类别(adultspoofmedicalviolenceracy),并返回给定图片中出现各类别内容的可能性。如需详细了解这些字段,请参阅 SafeSearchAnnotation 页面。

安全搜索检测请求

设置您的 GCP 项目和身份验证

对本地图片进行露骨内容检测

Vision API 可以将本地图片文件的内容作为 base64 编码的字符串在请求正文中发送,从而对此图片文件执行特征检测。

REST 和命令行

在使用下面的任何请求数据之前,请先进行以下替换:

  • base64-encoded-image:二进制图片数据的 base64 表示(ASCII 字符串)。此字符串应类似于以下字符串:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    如需了解详情,请参阅 base64 编码主题。

HTTP 方法和网址:

POST https://vision.googleapis.com/v1/images:annotate

请求 JSON 正文:

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "type": "SAFE_SEARCH_DETECTION"
        },
      ]
    }
  ]
}

如需发送请求,请选择以下方式之一:

curl

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

您应该收到类似以下内容的 JSON 响应:

{
  "responses": [
    {
      "safeSearchAnnotation": {
        "adult": "UNLIKELY",
        "spoof": "VERY_UNLIKELY",
        "medical": "VERY_UNLIKELY",
        "violence": "LIKELY",
        "racy": "POSSIBLE"
      }
    }
  ]
}

Go

在试用此示例之前,请按照Vision 快速入门:使用客户端库中的 Go 设置说明进行操作。 如需了解详情,请参阅 Vision Go API 参考文档


// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearch(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	props, err := client.DetectSafeSearch(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Safe Search properties:")
	fmt.Fprintln(w, "Adult:", props.Adult)
	fmt.Fprintln(w, "Medical:", props.Medical)
	fmt.Fprintln(w, "Racy:", props.Racy)
	fmt.Fprintln(w, "Spoofed:", props.Spoof)
	fmt.Fprintln(w, "Violence:", props.Violence)

	return nil
}

Java

在试用此示例之前,请按照Vision API 快速入门:使用客户端库中的 Java 设置说明进行操作。如需了解详情,请参阅 Vision API Java API 参考文档


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.SafeSearchAnnotation;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectSafeSearch {
  public static void detectSafeSearch() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectSafeSearch(filePath);
  }

  // Detects whether the specified image has features you would want to moderate.
  public static void detectSafeSearch(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.SAFE_SEARCH_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
        System.out.format(
            "adult: %s%nmedical: %s%nspoofed: %s%nviolence: %s%nracy: %s%n",
            annotation.getAdult(),
            annotation.getMedical(),
            annotation.getSpoof(),
            annotation.getViolence(),
            annotation.getRacy());
      }
    }
  }
}

Node.js

在试用此示例之前,请按照Vision 快速入门:使用客户端库中的 Node.js 设置说明进行操作。 如需了解详情,请参阅 Vision Node.js API 参考文档

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs safe search detection on the local file
const [result] = await client.safeSearchDetection(fileName);
const detections = result.safeSearchAnnotation;
console.log('Safe search:');
console.log(`Adult: ${detections.adult}`);
console.log(`Medical: ${detections.medical}`);
console.log(`Spoof: ${detections.spoof}`);
console.log(`Violence: ${detections.violence}`);
console.log(`Racy: ${detections.racy}`);

Python

在试用此示例之前,请按照Vision 快速入门:使用客户端库中的 Python 设置说明进行操作。 如需了解详情,请参阅 Vision Python API 参考文档

def detect_safe_search(path):
    """Detects unsafe features in the file."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.safe_search_detection(image=image)
    safe = response.safe_search_annotation

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Safe search:')

    print('adult: {}'.format(likelihood_name[safe.adult]))
    print('medical: {}'.format(likelihood_name[safe.medical]))
    print('spoofed: {}'.format(likelihood_name[safe.spoof]))
    print('violence: {}'.format(likelihood_name[safe.violence]))
    print('racy: {}'.format(likelihood_name[safe.racy]))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

对远程图片进行露骨内容检测

为方便起见,Vision API 可以直接对位于 Google Cloud Storage 或网络中的图片文件执行特征检测,无需在请求正文中发送图片文件的内容。

REST 和命令行

在使用下面的任何请求数据之前,请先进行以下替换:

  • cloud-storage-image-uri:Cloud Storage 存储分区中有效图片文件的路径。您必须至少拥有该文件的读取权限。 示例:
    • gs://my-storage-bucket/img/image1.png

HTTP 方法和网址:

POST https://vision.googleapis.com/v1/images:annotate

请求 JSON 正文:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "type": "SAFE_SEARCH_DETECTION"
        }
      ]
    }
  ]
}

如需发送请求,请选择以下方式之一:

curl

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

您应该收到类似以下内容的 JSON 响应:

{
  "responses": [
    {
      "safeSearchAnnotation": {
        "adult": "UNLIKELY",
        "spoof": "VERY_UNLIKELY",
        "medical": "VERY_UNLIKELY",
        "violence": "LIKELY",
        "racy": "POSSIBLE"
      }
    }
  ]
}

Go

在试用此示例之前,请按照Vision 快速入门:使用客户端库中的 Go 设置说明进行操作。 如需了解详情,请参阅 Vision Go API 参考文档


// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearchURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	props, err := client.DetectSafeSearch(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Safe Search properties:")
	fmt.Fprintln(w, "Adult:", props.Adult)
	fmt.Fprintln(w, "Medical:", props.Medical)
	fmt.Fprintln(w, "Racy:", props.Racy)
	fmt.Fprintln(w, "Spoofed:", props.Spoof)
	fmt.Fprintln(w, "Violence:", props.Violence)

	return nil
}

Java

在试用此示例之前,请按照Vision 快速入门:使用客户端库中的 Java 设置说明进行操作。 如需了解详情,请参阅 Vision Java API 参考文档


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.SafeSearchAnnotation;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectSafeSearchGcs {

  public static void detectSafeSearchGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectSafeSearchGcs(filePath);
  }

  // Detects whether the specified image on Google Cloud Storage has features you would want to
  // moderate.
  public static void detectSafeSearchGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
        System.out.format(
            "adult: %s%nmedical: %s%nspoofed: %s%nviolence: %s%nracy: %s%n",
            annotation.getAdult(),
            annotation.getMedical(),
            annotation.getSpoof(),
            annotation.getViolence(),
            annotation.getRacy());
      }
    }
  }
}

Node.js

在试用此示例之前,请按照Vision 快速入门:使用客户端库中的 Node.js 设置说明进行操作。 如需了解详情,请参阅 Vision Node.js API 参考文档

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs safe search property detection on the remote file
const [result] = await client.safeSearchDetection(
  `gs://${bucketName}/${fileName}`
);
const detections = result.safeSearchAnnotation;
console.log(`Adult: ${detections.adult}`);
console.log(`Spoof: ${detections.spoof}`);
console.log(`Medical: ${detections.medical}`);
console.log(`Violence: ${detections.violence}`);

Python

在试用此示例之前,请按照Vision 快速入门:使用客户端库中的 Python 设置说明进行操作。 如需了解详情,请参阅 Vision Python API 参考文档

def detect_safe_search_uri(uri):
    """Detects unsafe features in the file located in Google Cloud Storage or
    on the Web."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.safe_search_detection(image=image)
    safe = response.safe_search_annotation

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Safe search:')

    print('adult: {}'.format(likelihood_name[safe.adult]))
    print('medical: {}'.format(likelihood_name[safe.medical]))
    print('spoofed: {}'.format(likelihood_name[safe.spoof]))
    print('violence: {}'.format(likelihood_name[safe.violence]))
    print('racy: {}'.format(likelihood_name[safe.racy]))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

gcloud

如需执行安全搜索检测,请使用 gcloud ml vision detect-safe-search 命令,如以下示例所示:

gcloud ml vision detect-safe-search gs://my_bucket/input_file