A deteção de pontos de referência deteta estruturas naturais e feitas pelo homem populares numa imagem.

Pedidos de deteção de pontos de referência
Configure o seu Google Cloud projeto e autenticação
Se não tiver criado um Google Cloud projeto, faça-o agora. Expanda esta secção para ver instruções.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Se estiver a usar um fornecedor de identidade (IdP) externo, primeiro, tem de iniciar sessão na CLI gcloud com a sua identidade federada.
-
Para inicializar a CLI gcloud, execute o seguinte comando:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Se estiver a usar um fornecedor de identidade (IdP) externo, primeiro, tem de iniciar sessão na CLI gcloud com a sua identidade federada.
-
Para inicializar a CLI gcloud, execute o seguinte comando:
gcloud init
- BASE64_ENCODED_IMAGE: a representação base64 (string ASCII) dos dados da imagem binária. Esta string deve ser semelhante à
seguinte string:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- RESULTS_INT: (Opcional) Um valor inteiro de resultados a
devolver. Se omitir o campo
"maxResults"
e o respetivo valor, a API devolve o valor predefinido de 10 resultados. Este campo não se aplica aos seguintes tipos de elementos:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
ouCROP_HINTS
. - PROJECT_ID: o ID do seu Google Cloud projeto.
- CLOUD_STORAGE_IMAGE_URI: o caminho para um ficheiro de imagem válido num contentor do Cloud Storage. Tem de ter, pelo menos, privilégios de leitura para o ficheiro.
Exemplo:
gs://cloud-samples-data/vision/landmark/st_basils.jpeg
- RESULTS_INT: (Opcional) Um valor inteiro de resultados a
devolver. Se omitir o campo
"maxResults"
e o respetivo valor, a API devolve o valor predefinido de 10 resultados. Este campo não se aplica aos seguintes tipos de elementos:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
ouCROP_HINTS
. - PROJECT_ID: o ID do seu Google Cloud projeto.
Detete pontos de referência numa imagem local
Pode usar a API Vision para realizar a deteção de caraterísticas num ficheiro de imagem local.
Para pedidos REST, envie o conteúdo do ficheiro de imagem como uma string codificada em base64 no corpo do pedido.
Para pedidos da gcloud
e da biblioteca de cliente, especifique o caminho para uma imagem local no seu pedido.
REST
Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:
Método HTTP e URL:
POST https://vision.googleapis.com/v1/images:annotate
Corpo JSON do pedido:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "maxResults": RESULTS_INT, "type": "LANDMARK_DETECTION" }, ] } ] }
Para enviar o seu pedido, escolha uma destas opções:
curl
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Se o pedido for bem-sucedido, o servidor devolve um código de estado HTTP 200 OK
e a resposta no formato JSON.
Resposta:
{ "responses": [ { "landmarkAnnotations": [ { "mid": "/m/014lft", "description": "Saint Basil's Cathedral", "score": 0.7840959, "boundingPoly": { "vertices": [ { "x": 812, "y": 1058 }, { "x": 2389, "y": 1058 }, { "x": 2389, "y": 3052 }, { "x": 812, "y": 3052 } ] }, "locations": [ { "latLng": { "latitude": 55.752912, "longitude": 37.622315883636475 } } ] } ] } ] }
Go
Antes de experimentar este exemplo, siga as Goinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Go Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
// detectLandmarks gets landmarks from the Vision API for an image at the given file path.
func detectLandmarks(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
f, err := os.Open(file)
if err != nil {
return err
}
defer f.Close()
image, err := vision.NewImageFromReader(f)
if err != nil {
return err
}
annotations, err := client.DetectLandmarks(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No landmarks found.")
} else {
fmt.Fprintln(w, "Landmarks:")
for _, annotation := range annotations {
fmt.Fprintln(w, annotation.Description)
}
}
return nil
}
Java
Antes de experimentar este exemplo, siga as instruções de configuração do Java no guia de início rápido da API Vision com as bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Vision Java.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.LocationInfo;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectLandmarks {
public static void detectLandmarks() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "path/to/your/image/file.jpg";
detectLandmarks(filePath);
}
// Detects landmarks in the specified local image.
public static void detectLandmarks(String filePath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));
Image img = Image.newBuilder().setContent(imgBytes).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.LANDMARK_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (EntityAnnotation annotation : res.getLandmarkAnnotationsList()) {
LocationInfo info = annotation.getLocationsList().listIterator().next();
System.out.format("Landmark: %s%n %s%n", annotation.getDescription(), info.getLatLng());
}
}
}
}
}
Node.js
Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Node.js Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = 'Local image file, e.g. /path/to/image.png';
// Performs landmark detection on the local file
const [result] = await client.landmarkDetection(fileName);
const landmarks = result.landmarkAnnotations;
console.log('Landmarks:');
landmarks.forEach(landmark => console.log(landmark));
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Python Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
def detect_landmarks(path):
"""Detects landmarks in the file."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.landmark_detection(image=image)
landmarks = response.landmark_annotations
print("Landmarks:")
for landmark in landmarks:
print(landmark.description)
for location in landmark.locations:
lat_lng = location.lat_lng
print(f"Latitude {lat_lng.latitude}")
print(f"Longitude {lat_lng.longitude}")
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
Idiomas adicionais
C#: Siga as instruções de configuração do C# na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para .NET.
PHP: Siga as instruções de configuração do PHP na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para PHP.
Ruby: Siga as instruções de configuração do Ruby na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para Ruby.
Detete pontos de referência numa imagem remota
Pode usar a API Vision para realizar a deteção de funcionalidades num ficheiro de imagem remoto localizado no Cloud Storage ou na Web. Para enviar um pedido de ficheiro remoto, especifique o URL da Web do ficheiro ou o URI do Google Cloud Storage no corpo do pedido.
REST
Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:
Método HTTP e URL:
POST https://vision.googleapis.com/v1/images:annotate
Corpo JSON do pedido:
{ "requests": [ { "image": { "source": { "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "maxResults": RESULTS_INT, "type": "LANDMARK_DETECTION" }, ] } ] }
Para enviar o seu pedido, escolha uma destas opções:
curl
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Se o pedido for bem-sucedido, o servidor devolve um código de estado HTTP 200 OK
e a resposta no formato JSON.
Resposta:
{ "responses": [ { "landmarkAnnotations": [ { "mid": "/m/014lft", "description": "Saint Basil's Cathedral", "score": 0.7840959, "boundingPoly": { "vertices": [ { "x": 812, "y": 1058 }, { "x": 2389, "y": 1058 }, { "x": 2389, "y": 3052 }, { "x": 812, "y": 3052 } ] }, "locations": [ { "latLng": { "latitude": 55.752912, "longitude": 37.622315883636475 } } ] } ] } ] }
Go
Antes de experimentar este exemplo, siga as Goinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Go Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
// detectLandmarks gets landmarks from the Vision API for an image at the given file path.
func detectLandmarksURI(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
image := vision.NewImageFromURI(file)
annotations, err := client.DetectLandmarks(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No landmarks found.")
} else {
fmt.Fprintln(w, "Landmarks:")
for _, annotation := range annotations {
fmt.Fprintln(w, annotation.Description)
}
}
return nil
}
Java
Antes de experimentar este exemplo, siga as Javainstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Java Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.LocationInfo;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectLandmarksGcs {
public static void detectLandmarksGcs() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
detectLandmarksGcs(filePath);
}
// Detects landmarks in the specified remote image on Google Cloud Storage.
public static void detectLandmarksGcs(String gcsPath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.LANDMARK_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (EntityAnnotation annotation : res.getLandmarkAnnotationsList()) {
LocationInfo info = annotation.getLocationsList().listIterator().next();
System.out.format("Landmark: %s%n %s%n", annotation.getDescription(), info.getLatLng());
}
}
}
}
}
Node.js
Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Node.js Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';
// Performs landmark detection on the gcs file
const [result] = await client.landmarkDetection(
`gs://${bucketName}/${fileName}`
);
const landmarks = result.landmarkAnnotations;
console.log('Landmarks:');
landmarks.forEach(landmark => console.log(landmark));
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Python Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
def detect_landmarks_uri(uri):
"""Detects landmarks in the file located in Google Cloud Storage or on the
Web."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.Image()
image.source.image_uri = uri
response = client.landmark_detection(image=image)
landmarks = response.landmark_annotations
print("Landmarks:")
for landmark in landmarks:
print(landmark.description)
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
gcloud
Para realizar a deteção de pontos de referência, use o comando
gcloud ml vision detect-landmarks
, conforme mostrado no exemplo seguinte:
gcloud ml vision detect-landmarks gs://cloud-samples-data/vision/landmark/st_basils.jpeg
Idiomas adicionais
C#: Siga as instruções de configuração do C# na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para .NET.
PHP: Siga as instruções de configuração do PHP na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para PHP.
Ruby: Siga as instruções de configuração do Ruby na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para Ruby.
Experimentar
Experimente a deteção de pontos de referência abaixo. Pode usar a imagem já especificada (gs://cloud-samples-data/vision/landmark/st_basils.jpeg
) ou especificar a sua própria imagem em alternativa. Envie o pedido selecionando
Executar.

Corpo do pedido:
{ "requests": [ { "features": [ { "maxResults": 10, "type": "LANDMARK_DETECTION" } ], "image": { "source": { "imageUri": "gs://cloud-samples-data/vision/landmark/st_basils.jpeg" } } } ] }