Modelos compatibles con el motor de RAG de Vertex AI
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En esta página, se enumeran los modelos de Gemini, los modelos autoincluidos y los modelos con APIs administradas en Vertex AI que admiten Vertex AI RAG Engine.
Modelos de Gemini
En la siguiente tabla, se enumeran los modelos de Gemini y sus versiones que admiten el motor de RAG de Vertex AI:
Los modelos de Gemini ajustados no son compatibles cuando los modelos de Gemini usan Vertex AI RAG Engine.
Modelos implementados automáticamente
El motor de RAG de Vertex AI admite todos los modelos en Model Garden.
Usa Vertex AI RAG Engine con los extremos de modelos abiertos que implementaste por tu cuenta.
Reemplaza las variables que se usan en la muestra de código:
PROJECT_ID: Es el ID de tu proyecto.
LOCATION: Es la región en la que se procesará tu solicitud.
ENDPOINT_ID: Es el ID de tu extremo.
# Create a model instance with your self-deployed open model endpointrag_model=GenerativeModel("projects/PROJECT_ID/locations/LOCATION/endpoints/ENDPOINT_ID",tools=[rag_retrieval_tool])
Modelos con APIs administradas en Vertex AI
Los modelos con APIs administradas en Vertex AI que admiten el motor de RAG de Vertex AI incluyen los siguientes:
En el siguiente muestra de código, se muestra cómo usar la API de Gemini GenerateContent para crear una instancia de modelo generativo. El ID del modelo, /publisher/meta/models/llama-3.1-405B-instruct-maas, se encuentra en la tarjeta del modelo.
Reemplaza las variables que se usan en la muestra de código:
PROJECT_ID: Es el ID de tu proyecto.
LOCATION: Es la región en la que se procesará tu solicitud.
RAG_RETRIEVAL_TOOL: Es tu herramienta de recuperación de RAG.
# Create a model instance with Llama 3.1 MaaS endpointrag_model=GenerativeModel("projects/PROJECT_ID/locations/LOCATION/publisher/meta/models/llama-3.1-405B-instruct-maas",tools=RAG_RETRIEVAL_TOOL)
En el siguiente muestra de código, se muestra cómo usar la API de ChatCompletions compatible con OpenAI para generar una respuesta del modelo.
Reemplaza las variables que se usan en la muestra de código:
PROJECT_ID: Es el ID de tu proyecto.
LOCATION: Es la región en la que se procesará tu solicitud.
MODEL_ID: Es un modelo de LLM para la generación de contenido. Por ejemplo, meta/llama-3.1-405b-instruct-maas.
INPUT_PROMPT: Es el texto enviado al LLM para la generación de contenido. Usa una instrucción relevante para los documentos en Vertex AI Search.
RAG_CORPUS_ID: Es el ID del recurso del corpus de RAG.
ROLE: Tu rol
USER: Tu nombre de usuario
CONTENT: Tu contenido
# Generate a response with Llama 3.1 MaaS endpointresponse=client.chat.completions.create(model="MODEL_ID",messages=[{"ROLE":"USER","content":"CONTENT"}],extra_body={"extra_body":{"google":{"vertex_rag_store":{"rag_resources":{"rag_corpus":"RAG_CORPUS_ID"},"similarity_top_k":10}}}},)
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[],[],null,["# Vertex AI RAG Engine supported models\n\n| The [VPC-SC security controls](/vertex-ai/generative-ai/docs/security-controls) and\n| CMEK are supported by Vertex AI RAG Engine. Data residency and AXT security controls aren't\n| supported.\n\nThis page lists Gemini models, self-deployed models, and models with\nmanaged APIs on Vertex AI that support Vertex AI RAG Engine.\n\nGemini models\n-------------\n\nThe following table lists the Gemini models and their versions that\nsupport Vertex AI RAG Engine:\n\n- [Gemini 2.5 Flash-Lite](/vertex-ai/generative-ai/docs/models/gemini/2-5-flash-lite)\n- [Gemini 2.5 Pro](/vertex-ai/generative-ai/docs/models/gemini/2-5-pro)\n- [Gemini 2.5 Flash](/vertex-ai/generative-ai/docs/models/gemini/2-5-flash)\n- [Gemini 2.0 Flash](/vertex-ai/generative-ai/docs/models/gemini/2-0-flash)\n\nFine-tuned Gemini models are unsupported when the Gemini\nmodels use Vertex AI RAG Engine.\n\nSelf-deployed models\n--------------------\n\nVertex AI RAG Engine supports all models in\n[Model Garden](/vertex-ai/generative-ai/docs/model-garden/explore-models).\n\nUse Vertex AI RAG Engine with your self-deployed open model endpoints.\n\nReplace the variables used in the code sample:\n\n- **\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e**: Your project ID.\n- **\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e**: The region to process your request.\n- **\u003cvar translate=\"no\"\u003eENDPOINT_ID\u003c/var\u003e**: Your endpoint ID.\n\n # Create a model instance with your self-deployed open model endpoint\n rag_model = GenerativeModel(\n \"projects/\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e/locations/\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e/endpoints/\u003cvar translate=\"no\"\u003eENDPOINT_ID\u003c/var\u003e\",\n tools=[rag_retrieval_tool]\n )\n\nModels with managed APIs on Vertex AI\n-------------------------------------\n\nThe models with managed APIs on Vertex AI that support\nVertex AI RAG Engine include the following:\n\n- [Mistral on Vertex AI](/vertex-ai/generative-ai/docs/partner-models/mistral)\n- [Llama 3.1 and 3.2](/vertex-ai/generative-ai/docs/partner-models/llama)\n\nThe following code sample demonstrates how to use the Gemini\n`GenerateContent` API to create a generative model instance. The model ID,\n`/publisher/meta/models/llama-3.1-405B-instruct-maas`, is found in the\n[model card](/vertex-ai/generative-ai/docs/model-garden/explore-models).\n\nReplace the variables used in the code sample:\n\n- **\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e**: Your project ID.\n- **\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e**: The region to process your request.\n- **\u003cvar translate=\"no\"\u003eRAG_RETRIEVAL_TOOL\u003c/var\u003e**: Your RAG retrieval tool.\n\n # Create a model instance with Llama 3.1 MaaS endpoint\n rag_model = GenerativeModel(\n \"projects/\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e/locations/\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e/publisher/meta/models/llama-3.1-405B-instruct-maas\",\n tools=\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003eRAG_RETRIEVAL_TOOL\u003c/span\u003e\u003c/var\u003e\n )\n\nThe following code sample demonstrates how to use the OpenAI compatible\n`ChatCompletions` API to generate a model response.\n\nReplace the variables used in the code sample:\n\n- **\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e**: Your project ID.\n- **\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e**: The region to process your request.\n- **\u003cvar translate=\"no\"\u003eMODEL_ID\u003c/var\u003e** : LLM model for content generation. For example, `meta/llama-3.1-405b-instruct-maas`.\n- **\u003cvar translate=\"no\"\u003eINPUT_PROMPT\u003c/var\u003e**: The text sent to the LLM for content generation. Use a prompt relevant to the documents in Vertex AI Search.\n- **\u003cvar translate=\"no\"\u003eRAG_CORPUS_ID\u003c/var\u003e**: The ID of the RAG corpus resource.\n- **\u003cvar translate=\"no\"\u003eROLE\u003c/var\u003e**: Your role.\n- **\u003cvar translate=\"no\"\u003eUSER\u003c/var\u003e**: Your username.\n- **\u003cvar translate=\"no\"\u003eCONTENT\u003c/var\u003e**: Your content.\n\n # Generate a response with Llama 3.1 MaaS endpoint\n response = client.chat.completions.create(\n model=\"\u003cvar translate=\"no\"\u003eMODEL_ID\u003c/var\u003e\",\n messages=[{\"\u003cvar translate=\"no\"\u003eROLE\u003c/var\u003e\": \"\u003cvar translate=\"no\"\u003eUSER\u003c/var\u003e\", \"content\": \"\u003cvar translate=\"no\"\u003eCONTENT\u003c/var\u003e\"}],\n extra_body={\n \"extra_body\": {\n \"google\": {\n \"vertex_rag_store\": {\n \"rag_resources\": {\n \"rag_corpus\": \"\u003cvar translate=\"no\"\u003eRAG_CORPUS_ID\u003c/var\u003e\"\n },\n \"similarity_top_k\": 10\n }\n }\n }\n },\n )\n\nWhat's next\n-----------\n\n- [Use Embedding models with Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/use-embedding-models)."]]