Guide de démarrage rapide de l'API Gemini dans Vertex AI

Ce guide de démarrage rapide vous explique comment installer le SDK Google Gen AI pour la langue de votre choix, puis comment effectuer votre première requête d'API. Les exemples varient légèrement selon que vous vous authentifiez auprès de Vertex AI à l'aide d'une clé API ou des identifiants par défaut de l'application (ADC).

Choisissez votre méthode d'authentification :


Avant de commencer

Configurez les identifiants par défaut de l'application si ce n'est pas déjà fait.

Rôles requis

Pour obtenir les autorisations nécessaires pour utiliser l'API Gemini dans Vertex AI, demandez à votre administrateur de vous accorder le rôle IAM Utilisateur Vertex AI (roles/aiplatform.user) sur votre projet. Pour en savoir plus sur l'attribution de rôles, consultez la page Gérer l'accès aux projets, aux dossiers et aux organisations.

Vous pouvez également obtenir les autorisations requises avec des rôles personnalisés ou d'autres rôles prédéfinis.

Installer le SDK et configurer votre environnement

Sur votre ordinateur local, cliquez sur l'un des onglets suivants pour installer le SDK correspondant à votre langage de programmation.

SDK Gen AI pour Python

Installez et mettez à jour le SDK Gen AI pour Python en exécutant la commande suivante.

pip install --upgrade google-genai

Définissez les variables d'environnement :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

SDK Gen AI pour Go

Installez et mettez à jour le SDK Gen AI pour Go en exécutant la commande suivante.

go get google.golang.org/genai

Définissez les variables d'environnement :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

SDK Gen AI pour Node.js

Installez et mettez à jour le SDK Gen AI pour Node.js en exécutant la commande suivante.

npm install @google/genai

Définissez les variables d'environnement :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

SDK Gen AI pour Java

Installez et mettez à jour le SDK Gen AI pour Java en exécutant la commande suivante.

Maven

Ajoutez le code suivant à votre pom.xml :

<dependencies>
  <dependency>
    <groupId>com.google.genai</groupId>
    <artifactId>google-genai</artifactId>
    <version>0.7.0</version>
  </dependency>
</dependencies>

Définissez les variables d'environnement :

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

REST

Définissez les variables d'environnement :

GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
GOOGLE_CLOUD_LOCATION=global
API_ENDPOINT=YOUR_API_ENDPOINT
MODEL_ID="gemini-2.5-flash"
GENERATE_CONTENT_API="generateContent"

Créer votre première requête

Utilisez la méthode generateContent pour envoyer une requête à l'API Gemini dans Vertex AI :

Python

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="How does AI work?",
)
print(response.text)
# Example response:
# Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
#
# Here's a simplified overview:
# ...

Go

import (
	"context"
	"fmt"
	"io"

	"google.golang.org/genai"
)

// generateWithText shows how to generate text using a text prompt.
func generateWithText(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	resp, err := client.Models.GenerateContent(ctx,
		"gemini-2.5-flash",
		genai.Text("How does AI work?"),
		nil,
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)
	// Example response:
	// That's a great question! Understanding how AI works can feel like ...
	// ...
	// **1. The Foundation: Data and Algorithms**
	// ...

	return nil
}

Node.js

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: 'How does AI work?',
  });

  console.log(response.text);

  return response.text;
}

Java


import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;

public class TextGenerationWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with text input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(modelId, "How does AI work?", null);

      System.out.print(response.text());
      // Example response:
      // Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
      //
      // Here's a simplified overview:
      // ...
      return response.text();
    }
  }
}

REST

Pour envoyer cette requête, exécutez la commande curl à partir de la ligne de commande ou incluez l'appel REST dans votre application.

curl
-X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer $(gcloud auth print-access-token)"
"https://${API_ENDPOINT}/v1/projects/${GOOGLE_CLOUD_PROJECT}/locations/${GOOGLE_CLOUD_LOCATION}/publishers/google/models/${MODEL_ID}:${GENERATE_CONTENT_API}" -d
$'{
  "contents": {
    "role": "user",
    "parts": {
      "text": "Explain how AI works in a few words"
    }
  }
}'

Le modèle renvoie une réponse. Notez que la réponse est générée par section, et chaque section est évaluée séparément pour garantir la sécurité.

Générer des images

Gemini peut générer et traiter des images de manière conversationnelle. Vous pouvez fournir à Gemini du texte, des images ou une combinaison des deux pour effectuer diverses tâches liées aux images, comme la génération et la retouche d'images. Le code suivant montre comment générer une image à partir d'un prompt descriptif :

Vous devez inclure responseModalities: ["TEXT", "IMAGE"] dans votre configuration. La sortie d'image uniquement n'est pas disponible avec ces modèles.

Python

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image
from io import BytesIO

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image-preview",
    contents=("Generate an image of the Eiffel tower with fireworks in the background."),
    config=GenerateContentConfig(
        response_modalities=[Modality.TEXT, Modality.IMAGE],
        candidate_count=1,
        safety_settings=[
            {"method": "PROBABILITY"},
            {"category": "HARM_CATEGORY_DANGEROUS_CONTENT"},
            {"threshold": "BLOCK_MEDIUM_AND_ABOVE"},
        ],
    ),
)
for part in response.candidates[0].content.parts:
    if part.text:
        print(part.text)
    elif part.inline_data:
        image = Image.open(BytesIO((part.inline_data.data)))
        image.save("output_folder/example-image-eiffel-tower.png")
# Example response:
#   I will generate an image of the Eiffel Tower at night, with a vibrant display of
#   colorful fireworks exploding in the dark sky behind it. The tower will be
#   illuminated, standing tall as the focal point of the scene, with the bursts of
#   light from the fireworks creating a festive atmosphere.

Node.js

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContentStream({
    model: 'gemini-2.0-flash-exp',
    contents:
      'Generate an image of the Eiffel tower with fireworks in the background.',
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });

  const generatedFileNames = [];
  let imageIndex = 0;
  for await (const chunk of response) {
    const text = chunk.text;
    const data = chunk.data;
    if (text) {
      console.debug(text);
    } else if (data) {
      const fileName = `generate_content_streaming_image_${imageIndex++}.png`;
      console.debug(`Writing response image to file: ${fileName}.`);
      try {
        fs.writeFileSync(fileName, data);
        generatedFileNames.push(fileName);
      } catch (error) {
        console.error(`Failed to write image file ${fileName}:`, error);
      }
    }
  }

  return generatedFileNames;
}

Compréhension des images

Gemini peut également comprendre les images. Le code suivant utilise l'image générée dans la section précédente et un modèle différent pour inférer des informations sur l'image :

Python

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "What is shown in this image?",
        Part.from_uri(
            file_uri="gs://cloud-samples-data/generative-ai/image/scones.jpg",
            mime_type="image/jpeg",
        ),
    ],
)
print(response.text)
# Example response:
# The image shows a flat lay of blueberry scones arranged on parchment paper. There are ...

Go

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithTextImage shows how to generate text using both text and image input
func generateWithTextImage(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What is shown in this image?"},
			{FileData: &genai.FileData{
				// Image source: https://storage.googleapis.com/cloud-samples-data/generative-ai/image/scones.jpg
				FileURI:  "gs://cloud-samples-data/generative-ai/image/scones.jpg",
				MIMEType: "image/jpeg",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// The image shows an overhead shot of a rustic, artistic arrangement on a surface that ...

	return nil
}

Node.js

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const image = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/image/scones.jpg',
      mimeType: 'image/jpeg',
    },
  };

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [image, 'What is shown in this image?'],
  });

  console.log(response.text);

  return response.text;
}

Java


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithTextAndImage {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with text and image input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText("What is shown in this image?"),
                  Part.fromUri(
                      "gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg")),
              null);

      System.out.print(response.text());
      // Example response:
      // The image shows a flat lay of blueberry scones arranged on parchment paper. There are ...
      return response.text();
    }
  }
}

Exécution du code

La fonctionnalité d'exécution de code de l'API Gemini dans Vertex AI permet au modèle de générer et d'exécuter du code Python ainsi que d'apprendre des résultats de façon itérative jusqu'à ce qu'il parvienne à une sortie finale. Comme l'appel de fonction, l'exécution de code est disponible en tant qu'outil pour Vertex AI. Avec cette fonctionnalité, vous pouvez créer des applications qui bénéficient d'un raisonnement basé sur du code et qui produisent des sorties textuelles. Exemple :

Python

from google import genai
from google.genai.types import (
    HttpOptions,
    Tool,
    ToolCodeExecution,
    GenerateContentConfig,
)

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

code_execution_tool = Tool(code_execution=ToolCodeExecution())
response = client.models.generate_content(
    model=model_id,
    contents="Calculate 20th fibonacci number. Then find the nearest palindrome to it.",
    config=GenerateContentConfig(
        tools=[code_execution_tool],
        temperature=0,
    ),
)
print("# Code:")
print(response.executable_code)
print("# Outcome:")
print(response.code_execution_result)

# Example response:
# # Code:
# def fibonacci(n):
#     if n <= 0:
#         return 0
#     elif n == 1:
#         return 1
#     else:
#         a, b = 0, 1
#         for _ in range(2, n + 1):
#             a, b = b, a + b
#         return b
#
# fib_20 = fibonacci(20)
# print(f'{fib_20=}')
#
# # Outcome:
# fib_20=6765

Go

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithCodeExec shows how to generate text using the code execution tool.
func generateWithCodeExec(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	prompt := "Calculate 20th fibonacci number. Then find the nearest palindrome to it."
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: prompt},
		},
			Role: "user"},
	}
	config := &genai.GenerateContentConfig{
		Tools: []*genai.Tool{
			{CodeExecution: &genai.ToolCodeExecution{}},
		},
		Temperature: genai.Ptr(float32(0.0)),
	}
	modelName := "gemini-2.5-flash"

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	for _, p := range resp.Candidates[0].Content.Parts {
		if p.Text != "" {
			fmt.Fprintf(w, "Gemini: %s", p.Text)
		}
		if p.ExecutableCode != nil {
			fmt.Fprintf(w, "Language: %s\n%s\n", p.ExecutableCode.Language, p.ExecutableCode.Code)
		}
		if p.CodeExecutionResult != nil {
			fmt.Fprintf(w, "Outcome: %s\n%s\n", p.CodeExecutionResult.Outcome, p.CodeExecutionResult.Output)
		}
	}

	// Example response:
	// Gemini: Okay, I can do that. First, I'll calculate the 20th Fibonacci number. Then, I need ...
	//
	// Language: PYTHON
	//
	// def fibonacci(n):
	//    ...
	//
	// fib_20 = fibonacci(20)
	// print(f'{fib_20=}')
	//
	// Outcome: OUTCOME_OK
	// fib_20=6765
	//
	// Now that I have the 20th Fibonacci number (6765), I need to find the nearest palindrome. ...
	// ...

	return nil
}

Node.js

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents:
      'What is the sum of the first 50 prime numbers? Generate and run code for the calculation, and make sure you get all 50.',
    config: {
      tools: [{codeExecution: {}}],
      temperature: 0,
    },
  });

  console.debug(response.executableCode);
  console.debug(response.codeExecutionResult);

  return response.codeExecutionResult;
}

Pour obtenir d'autres exemples d'exécution de code, consultez la documentation sur l'exécution de code.

Étapes suivantes

Maintenant que vous avez effectué votre première requête d'API, vous pouvez consulter les guides suivants qui expliquent comment configurer des fonctionnalités Vertex AI plus avancées pour le code de production :