本页面介绍了如何使用 Google Cloud 控制台、REST API 和受支持的 SDK 向 Gemini 模型发送聊天提示。
如需了解如何将图片和其他媒体添加到请求,请参阅图片理解。
如需查看 Gemini 支持的语言列表,请参阅语言支持。
如需探索 Vertex AI 上可用的生成式 AI 模型和 API,请转到 Google Cloud 控制台中的 Model Garden。
如果您正在寻找一种直接在移动应用和 Web 应用中使用 Gemini 的方法,请参阅适用于 Android、Swift、Web 和 Flutter 应用的 Vertex AI in Firebase SDK。
如需测试和迭代聊天提示,我们建议使用 Google Cloud 控制台。如需以编程方式将提示发送到模型,您可以使用 REST API、Python 版 Vertex AI SDK 或以下标签页中显示的其他受支持的库和 SDK。
Python
如需了解如何安装或更新 Python 版 Vertex AI SDK,请参阅安装 Python 版 Vertex AI SDK。如需了解详情,请参阅 Vertex AI SDK for Python API 参考文档。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。 对于流式回答,您将在生成每个响应的输出词元后立即收到响应。对于非流式回答,您将在生成所有输出词元后收到所有响应。
对于流式回答,请使用 generate_content
中的 stream
参数。
response = model.generate_content(contents=[...], stream = True)
对于非流式回答,请移除该参数或将参数设置为 False
。
示例代码
C#
在尝试此示例之前,请按照《Vertex AI 快速入门》中的 C# 设置说明执行操作。如需了解详情,请参阅 Vertex AI C# 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。 对于流式回答,您将在生成每个响应的输出词元后立即收到响应。对于非流式回答,您会在生成所有输出词元之后收到所有回答。
对于流式回答,请使用 StreamGenerateContent
方法。
public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
对于非流式回答,请使用 GenerateContentAsync
方法。
public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
如需详细了解服务器如何流式传输回答,请参阅流式传输 RPC。
示例代码
Node.js
在尝试此示例之前,请按照《生成式 AI 快速入门:使用 Node.js SDK》中的 Node.js 设置说明执行操作。如需了解详情,请参阅适用于 Gemini 的 Node.js SDK 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。 对于流式回答,您将在生成每个响应的输出词元后立即收到响应。对于非流式回答,您会在生成所有输出词元之后收到所有回答。
对于流式回答,请使用 generateContentStream
方法。
const streamingResp = await generativeModel.generateContentStream(request);
对于非流式回答,请使用 generateContent
方法。
const streamingResp = await generativeModel.generateContent(request);
示例代码
Java
在尝试此示例之前,请按照《Vertex AI 快速入门》中的 Java 设置说明执行操作。如需了解详情,请参阅适用于 Gemini 的 Vertex AI Java SDK 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。 对于流式回答,您将在生成每个响应的输出词元后立即收到响应。对于非流式回答,您会在生成所有输出词元之后收到所有回答。
对于流式回答,请使用 generateContentStream
方法。
public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
对于非流式回答,请使用 generateContent
方法。
public GenerateContentResponse generateContent(Content content)
示例代码
Go
在尝试此示例之前,请按照《Vertex AI 快速入门》中的 Go 设置说明执行操作。如需了解详情,请参阅适用于 Gemini 的 Vertex AI Go SDK 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。如需了解详情,请参阅为本地开发环境设置身份验证。
流式回答和非流式回答
您可以选择模型是生成流式回答还是非流式回答。 对于流式回答,您将在生成每个响应的输出词元后立即收到响应。对于非流式回答,您会在生成所有输出词元之后收到所有回答。
对于流式回答,请使用 GenerateContentStream
方法。
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
对于非流式回答,请使用 GenerateContent
方法。
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
示例代码
REST
设置您的环境后,您可以使用 REST 测试文本提示。以下示例会向发布方模型端点发送请求。
在使用任何请求数据之前,请先进行以下替换:
GENERATE_RESPONSE_METHOD
:您希望模型生成的回答类型。选择一种方法来生成您希望返回模型回答的方式:streamGenerateContent
:在生成回答时进行流式传输,以降低真人受众群体对于延迟的感知度。generateContent
:回答在完全生成后返回。
LOCATION
:处理请求的区域。可用的选项包括:点击即可展开可用区域的部分列表
us-central1
us-west4
northamerica-northeast1
us-east4
us-west1
asia-northeast3
asia-southeast1
asia-northeast1
PROJECT_ID
:您的项目 ID。MODEL_ID
:您要使用的多模态模型 ID。一些选项包括:gemini-1.0-pro-002
gemini-1.0-pro-vision-001
gemini-1.5-pro-002
gemini-1.5-flash
要包含在多回合对话的第一个提示中的文本说明。例如,TEXT1
What are all the colors in a rainbow?
要包含在第二个提示中的文本说明。例如,TEXT2
Why does it appear when it rains?
TEMPERATURE
:温度 (temperature) 在生成回答期间用于采样,在应用topP
和topK
时会生成回答。温度可以控制词元选择的随机性。 较低的温度有利于需要更少开放性或创造性回复的提示,而较高的温度可以带来更具多样性或创造性的结果。温度为0
表示始终选择概率最高的词元。在这种情况下,给定提示的回复大多是确定的,但可能仍然有少量变化。如果模型返回的回答过于笼统、过于简短,或者模型给出后备回答,请尝试提高温度。
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "contents": [ { "role": "user", "parts": { "text": "TEXT1" } }, { "role": "model", "parts": { "text": "What a great question!" } }, { "role": "user", "parts": { "text": "TEXT2" } } ], "generation_config": { "temperature": TEMPERATURE } } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "contents": [ { "role": "user", "parts": { "text": "TEXT1" } }, { "role": "model", "parts": { "text": "What a great question!" } }, { "role": "user", "parts": { "text": "TEXT2" } } ], "generation_config": { "temperature": TEMPERATURE } } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应。
请注意此示例网址中的以下内容:- 使用
generateContent
方法请求在回答完全生成后返回回答。 为了降低真人观众对于延迟的感知度,请使用streamGenerateContent
方法在生成回答时流式传输回答。 - 多模态模型 ID 位于网址末尾且位于方法之前(例如
gemini-1.5-flash
或gemini-1.0-pro-vision
)。此示例可能还支持其他模型。
控制台
如需使用 Vertex AI Studio 在 Google Cloud 控制台中发送聊天提示,请执行以下操作:
- 在 Google Cloud 控制台的“Vertex AI”部分,进入 Vertex AI Studio 页面。
- 在发起对话中,点击文本聊天。
可选:配置模型和参数:
- 模型:选择 Gemini Pro。
- 区域:选择您要使用的区域。
温度:使用滑块或文本框输入温度值。
温度 (temperature) 在生成回复期间用于采样,在应用topP
和topK
时会生成回复。温度可以控制词元选择的随机性。 较低的温度有利于需要更少开放性或创造性回复的提示,而较高的温度可以带来更具多样性或创造性的结果。温度为0
表示始终选择概率最高的词元。在这种情况下,给定提示的回复大多是确定的,但可能仍然有少量变化。如果模型返回的回答过于笼统、过于简短,或者模型给出后备回答,请尝试提高温度。
输出词元上限:使用滑块或文本框输入输出上限值。
回复中可生成的词元数量上限。词元约为 4 个字符。100 个词元对应大约 60-80 个单词。指定较低的值可获得较短的回答,指定较高的值可获得可能较长的回答。
- 添加停止序列:可选。输入停止序列,即包含空格的一系列字符。如果模型遇到停止序列,则回答生成会停止。停止序列不包含在响应中,您最多可以添加五个停止序列。
- 可选:如需配置高级参数,请点击高级,然后按如下方式进行配置:
点击即可展开高级配置
Top-K:使用滑块或文本框输入 top-K 值。
Top-K 可更改模型选择输出词元的方式。如果 top-K 设为1
,表示所选词元是模型词汇表的所有词元中概率最高的词元(也称为贪心解码)。如果 top-K 设为3
,则表示系统将从 3 个概率最高的词元(通过温度确定)中选择下一个词元。在每个词元选择步骤中,系统都会对概率最高的 top-K 词元进行采样。然后,系统会根据 top-P 进一步过滤词元,并使用温度采样选择最终的词元。
指定较低的值可获得随机程度较低的回答,指定较高的值可获得随机程度较高的回答。
- Top-P:使用滑块或文本框输入 top-P 值。
系统会按照概率从最高到最低的顺序选择词元,直到所选词元的概率总和等于 top-P 的值。如需获得数量最小的变量结果,请将 top-P 设置为
0
。 - 启用连接:添加连接来源和路径以自定义此功能。
- 在提示窗格中输入文本提示。随后,模型会使用之前的消息作为新回答的语境。
- 可选:如需显示文本词元数量,请点击查看词元。您可以查看文本提示的词元或词元 ID。
- 如需在文本提示中查看词元(使用不同颜色标记每个词元 ID 的边界进行突出显示),请点击词元 ID 转换为文本。不支持媒体词元。
- 如需查看词元 ID,请点击词元 ID。
要关闭词元化器工具窗格,请点击 X,或点击窗格外部。
- 点击提交。
- 可选:如需将提示保存到我的提示,请点击 保存。
- 可选:如需获取提示的 Python 代码或 curl 命令,请点击 获取代码。
- 可选:如需清除之前的所有消息,请点击 清除对话
您可以使用系统说明根据特定需求或使用场景来控制模型的行为。例如,您可以为响应客户服务请求的聊天机器人定义角色。如需了解详情,请参阅系统说明代码示例。
后续步骤
了解如何发送多模态提示请求: