Gesteuerte Generierung

Sie können dafür sorgen, dass die generierte Ausgabe eines Modells immer einem bestimmten Schema entspricht, sodass Sie konsistent formatierte Antworten erhalten. Sie haben beispielsweise ein festgelegtes Datenschema, das Sie für andere Aufgaben verwenden. Wenn das Modell demselben Schema folgt, können Sie Daten direkt aus der Ausgabe des Modells ohne Nachbearbeitung extrahieren.

Definieren Sie zum Angeben der Struktur der Ausgabe eines Modells ein Antwortschema, das als Vorlage für Modellantworten fungiert. Wenn Sie einen Prompt einreichen und das Antwortschema angeben, folgt die Antwort des Modells immer dem von Ihnen definierten Schema.

Sie können die generierte Ausgabe mit den folgenden Modellen steuern:

  • Gemini 1.5 Pro,
  • Gemini 1.5 Flash

Informationen zu Funktionsaufrufen mit gesteuerter Generierung (auch erzwungene Funktionsaufrufe genannt) finden Sie unter Einführung in Funktionsaufrufe.

Beispielanwendungsfälle

Ein Anwendungsfall für die Anwendung eines Antwortschemas besteht darin, sicherzustellen, dass die Antwort eines Modells einen gültigen JSON-Code erzeugt und Ihrem Schema entspricht. Die Ausgaben eines generativen Modells können einen gewissen Grad an Variabilität aufweisen. Durch das Einbinden eines Antwortschemas wird sichergestellt, dass Sie immer gültige JSON-Daten erhalten. Folglich können Ihre nachgelagerten Aufgaben zuverlässig gültige JSON-Eingaben aus generierten Antworten erwarten.

Ein weiteres Beispiel ist die Einschränkung der Reaktion eines Modells. Sie können beispielsweise festlegen, dass ein Modell Text mit benutzerdefinierten Labels annotiert, nicht mit Labels, die vom Modell erstellt werden. Diese Einschränkung ist nützlich, wenn Sie eine bestimmte Gruppe von Labels wie positive oder negative erwarten und keine Mischung aus anderen Labels erhalten möchten, die vom Modell generiert werden könnten, z. B. good, positive, negative oder bad.

Hinweise

In den folgenden Abschnitten werden mögliche Einschränkungen bei der Verwendung eines Antwortschemas beschrieben:

  • Sie müssen die API verwenden, um ein Antwortschema zu definieren und zu verwenden. Es gibt keinen Support für Konsolen.
  • Die Größe des Antwortschemas wird auf das Eingabetokenlimit angerechnet.
  • Es werden nur bestimmte Ausgabeformate unterstützt, z. B. application/json oder text/x.enum. Weitere Informationen finden Sie im Abschnitt zum Parameter responseMimeType in der Gemini API-Referenz.
  • Die gesteuerte Generierung unterstützt die folgenden Schemafelder, die einen Teil der von Vertex AI unterstützten Felder ausmachen:

    • enum
    • items
    • maxItems
    • nullable
    • properties
    • required

    Wenn Sie ein nicht unterstütztes Feld verwenden, kann Vertex AI Ihre Anfrage zwar bearbeiten, ignoriert das Feld aber. Details zu den einzelnen Feldern finden Sie in der Vertex AI-Schemareferenz.

Vorbereitung

Definieren Sie ein Antwortschema, um die Struktur der Ausgabe eines Modells, die Feldnamen und den erwarteten Datentyp für jedes Feld anzugeben. Verwenden Sie nur die im Abschnitt Hinweise aufgeführten unterstützten Felder. Alle anderen Felder werden ignoriert.

Beispielschemas finden Sie im Abschnitt Beispielschemas und Modellantworten.

Modellverhalten und Antwortschema

Wenn ein Modell eine Antwort generiert, verwendet es den Feldnamen und den Kontext aus dem Prompt. Daher empfehlen wir Ihnen, eine klare Struktur und eindeutige Feldnamen zu verwenden, damit Ihr Zweck klar ist.

Standardmäßig sind Felder optional, d. h., das Modell kann die Felder ausfüllen oder überspringen. Sie können Felder nach Bedarf festlegen, um das Modell zu zwingen, einen Wert anzugeben. Wenn in der zugehörigen Eingabeaufforderung nicht genügend Kontext vorhanden ist, generiert das Modell Antworten hauptsächlich anhand der Daten, mit denen es trainiert wurde.

Wenn die erwarteten Ergebnisse nicht angezeigt werden, fügen Sie Ihren Eingabe-Prompts weiteren Kontext hinzu oder überarbeiten Sie Ihr Antwortschema. Überprüfen Sie beispielsweise die Antwort ohne gesteuerte Generierung, um zu sehen, wie das Modell reagiert. Sie können dann Ihr Antwortschema aktualisieren, das besser zur Ausgabe des Modells passt.

Prompt mit einem Antwortschema senden

Standardmäßig sind alle Felder optional. Das bedeutet, dass ein Modell eine Antwort auf ein Feld generieren kann. Wenn Sie erzwingen möchten, dass das Modell immer eine Antwort für ein Feld generiert, legen Sie das Feld entsprechend fest.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "array",
    "items": {
        "type": "object",
        "properties": {
            "recipe_name": {
                "type": "string",
            },
        },
        "required": ["recipe_name"],
    },
}

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    "List a few popular cookie recipes",
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     {"recipe_name": "Chocolate Chip Cookies"},
#     {"recipe_name": "Peanut Butter Cookies"},
#     {"recipe_name": "Snickerdoodles"},
#     {"recipe_name": "Oatmeal Raisin Cookies"},
# ]

REST

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • GENERATE_RESPONSE_METHOD: Der Antworttyp, den das Modell generieren soll. Wählen Sie eine Methode aus, mit der generiert wird, wie die Antwort des Modells zurückgegeben werden soll:
    • streamGenerateContent: Die Antwort wird während der Generierung gestreamt, um die Wahrnehmung der Latenz für menschliche Zielgruppen zu reduzieren.
    • generateContent: Die Antwort wird zurückgegeben, nachdem sie vollständig generiert wurde.
  • LOCATION: Die Region, in der die Anfrage verarbeitet werden soll.
  • PROJECT_ID: Ihre Projekt-ID.
  • MODEL_ID: die Modell-ID des multimodalen Modells, das Sie verwenden möchten. Folgende Optionen sind verfügbar:
    • gemini-1.5-pro
  • ROLE: Die Rolle in einer mit dem Inhalt verknüpften Unterhaltung. Die Angabe einer Rolle ist auch bei Anwendungsfällen mit nur einem Schritt erforderlich. Unter anderem sind folgende Werte zulässig:
    • USER: Gibt Inhalte an, die von Ihnen gesendet werden
  • TEXT: Die Textanleitung, die in den Prompt eingefügt werden soll.
  • RESPONSE_MIME_TYPE: Der Formattyp des generierten Kandidatentexts. Eine Liste der unterstützten Werte finden Sie im Parameter responseMimeType in der Gemini API.
  • RESPONSE_SCHEMA: Schema, dem das Modell beim Generieren von Antworten folgen soll. Weitere Informationen finden Sie in der Schemareferenz.

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD

JSON-Text der Anfrage:

{
  "contents": {
    "role": "ROLE",
    "parts": {
      "text": "TEXT"
    }
  },
  "generation_config": {
    "responseMimeType": "RESPONSE_MIME_TYPE",
    "responseSchema": RESPONSE_SCHEMA,
  }
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD" | Select-Object -Expand Content

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

Beispiel: cURL-Befehls

LOCATION="us-central1"
MODEL_ID="gemini-1.0-pro"
PROJECT_ID="test-project"
GENERATE_RESPONSE_METHOD="generateContent"

cat << EOF > request.json
{
  "contents": {
    "role": "user",
    "parts": {
      "text": "List a few popular cookie recipes."
    }
  },
  "generation_config": {
    "maxOutputTokens": 2048,
    "responseMimeType": "application/json",
    "responseSchema": {
      "type": "array",
      "items": {
        "type": "object",
        "properties": {
          "recipe_name": {
            "type": "string",
          },
        },
        "required": ["recipe_name"],
      },
    }
  }
}
EOF

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:${GENERATE_RESPONSE_METHOD} -d \
-d `@request.json`

Beispielschemas und Modellantworten

In den folgenden Abschnitten werden verschiedene Beispielaufforderungen und Antwortschemas gezeigt. Nach jedem Codebeispiel ist eine Beispielmodellantwort enthalten.

Überprüfungsbewertungen zusammenfassen

Im folgenden Beispiel wird ein Array von Objekten ausgegeben, wobei jedes Objekt zwei Eigenschaften hat: die Bewertung und den Namen einer Eiscreme.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "ARRAY",
    "items": {
        "type": "ARRAY",
        "items": {
            "type": "OBJECT",
            "properties": {
                "rating": {"type": "INTEGER"},
                "flavor": {"type": "STRING"},
            },
        },
    },
}

prompt = """
    Reviews from our social media:
    - "Absolutely loved it! Best ice cream I've ever had." Rating: 4, Flavor: Strawberry Cheesecake
    - "Quite good, but a bit too sweet for my taste." Rating: 1, Flavor: Mango Tango
"""

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     [
#         {"flavor": "Strawberry Cheesecake", "rating": 4},
#         {"flavor": "Mango Tango", "rating": 1},
#     ]
# ]

Beispiel für eine Modellantwort

candidates {
  content {
    role: "model"
    parts {
      text: "[\n    [\n        {\n            \"rating\": 4\n        },\n        {\n            \"flavor\": \"Strawberry Cheesecake\"\n        },\n        {\n            \"rating\": 1\n        },\n        {\n            \"flavor\": \"Mango Tango\"\n        }\n    ]\n] "
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.1139734759926796
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.10070161521434784
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.13695430755615234
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.12241825461387634
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.11676400154829025
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.05310790613293648
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.10521054267883301
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.08299414813518524
  }
}
usage_metadata {
  prompt_token_count: 61
  candidates_token_count: 66
  total_token_count: 127
}

Wetter für jeden Tag der Woche vorhersagen

Im folgenden Beispiel wird für jeden Tag der Woche ein forecast-Objekt ausgegeben, das eine Reihe von Attributen wie die erwartete Temperatur und Luftfeuchtigkeit für den Tag enthält. Einige Attribute sind auf „nullable“ gesetzt, damit das Modell einen Nullwert zurückgeben kann, wenn nicht genügend Kontext vorhanden ist, um eine sinnvolle Antwort zu generieren. Diese Strategie trägt dazu bei, Halluzinationen zu reduzieren.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "OBJECT",
    "properties": {
        "forecast": {
            "type": "ARRAY",
            "items": {
                "type": "OBJECT",
                "properties": {
                    "Day": {"type": "STRING", "nullable": True},
                    "Forecast": {"type": "STRING", "nullable": True},
                    "Temperature": {"type": "INTEGER", "nullable": True},
                    "Humidity": {"type": "STRING", "nullable": True},
                    "Wind Speed": {"type": "INTEGER", "nullable": True},
                },
                "required": ["Day", "Temperature", "Forecast", "Wind Speed"],
            },
        }
    },
}

prompt = """
    The week ahead brings a mix of weather conditions.
    Sunday is expected to be sunny with a temperature of 77°F and a humidity level of 50%. Winds will be light at around 10 km/h.
    Monday will see partly cloudy skies with a slightly cooler temperature of 72°F and the winds will pick up slightly to around 15 km/h.
    Tuesday brings rain showers, with temperatures dropping to 64°F and humidity rising to 70%.
    Wednesday may see thunderstorms, with a temperature of 68°F.
    Thursday will be cloudy with a temperature of 66°F and moderate humidity at 60%.
    Friday returns to partly cloudy conditions, with a temperature of 73°F and the Winds will be light at 12 km/h.
    Finally, Saturday rounds off the week with sunny skies, a temperature of 80°F, and a humidity level of 40%. Winds will be gentle at 8 km/h.
"""

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
#  {"forecast": [{"Day": "Sunday", "Forecast": "Sunny", "Temperature": 77, "Humidity": "50%", "Wind Speed": 10},
#     {"Day": "Monday", "Forecast": "Partly Cloudy", "Temperature": 72, "Wind Speed": 15},
#     {"Day": "Tuesday", "Forecast": "Rain Showers", "Temperature": 64, "Humidity": "70%"},
#     {"Day": "Wednesday", "Forecast": "Thunderstorms", "Temperature": 68},
#     {"Day": "Thursday", "Forecast": "Cloudy", "Temperature": 66, "Humidity": "60%"},
#     {"Day": "Friday", "Forecast": "Partly Cloudy", "Temperature": 73, "Wind Speed": 12},
#     {"Day": "Saturday", "Forecast": "Sunny", "Temperature": 80, "Humidity": "40%", "Wind Speed": 8}]}

Beispiel für eine Modellantwort

candidates {
  content {
    role: "model"
    parts {
      text: "{\"forecast\": [{\"Day\": \"Sunday\", \"Forecast\": \"sunny\", \"Humidity\": \"50%\", \"Temperature\": 77, \"Wind Speed\": 10}, {\"Day\": \"Monday\", \"Forecast\": \"partly cloudy\", \"Humidity\": null, \"Temperature\": 72, \"Wind Speed\": 15}, {\"Day\": \"Tuesday\", \"Forecast\": \"rain showers\", \"Humidity\": \"70%\", \"Temperature\": 64, \"Wind Speed\": null}, {\"Day\": \"Wednesday\", \"Forecast\": \"thunderstorms\", \"Humidity\": null, \"Temperature\": 68, \"Wind Speed\": null}, {\"Day\": \"Thursday\", \"Forecast\": \"cloudy\", \"Humidity\": \"60%\", \"Temperature\": 66, \"Wind Speed\": null}, {\"Day\": \"Friday\", \"Forecast\": \"partly cloudy\", \"Humidity\": null, \"Temperature\": 73, \"Wind Speed\": 12}, {\"Day\": \"Saturday\", \"Forecast\": \"sunny\", \"Humidity\": \"40%\", \"Temperature\": 80, \"Wind Speed\": 8}]}"
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.1037486344575882
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.09670579433441162
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.18126320838928223
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.10052486509084702
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.15960998833179474
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.09518112242221832
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.1388116478919983
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.10539454221725464
  }
}
usage_metadata {
  prompt_token_count: 280
  candidates_token_count: 249
  total_token_count: 529
}

Produkt klassifizieren

Das folgende Beispiel enthält Enums, bei denen das Modell den Typ und die Bedingung eines Objekts anhand einer Liste von angegebenen Werten klassifizieren muss.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "ARRAY",
    "items": {
        "type": "OBJECT",
        "properties": {
            "to_discard": {"type": "INTEGER"},
            "subcategory": {"type": "STRING"},
            "safe_handling": {"type": "INTEGER"},
            "item_category": {
                "type": "STRING",
                "enum": [
                    "clothing",
                    "winter apparel",
                    "specialized apparel",
                    "furniture",
                    "decor",
                    "tableware",
                    "cookware",
                    "toys",
                ],
            },
            "for_resale": {"type": "INTEGER"},
            "condition": {
                "type": "STRING",
                "enum": [
                    "new in package",
                    "like new",
                    "gently used",
                    "used",
                    "damaged",
                    "soiled",
                ],
            },
        },
    },
}

prompt = """
    Item description:
    The item is a long winter coat that has many tears all around the seams and is falling apart.
    It has large questionable stains on it.
"""

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     {
#         "condition": "damaged",
#         "item_category": "clothing",
#         "subcategory": "winter apparel",
#         "to_discard": 123,
#     }
# ]

Beispiel für eine Modellantwort

candidates {
  content {
    role: "model"
    parts {
      text: " [{\n    \"item_category\": \"winter apparel\",\n    \"subcategory\": \"coat\",\n    \"to_discard\":  1\n  }] "
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.08945459872484207
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.13753245770931244
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.19208428263664246
    severity: HARM_SEVERITY_LOW
    severity_score: 0.23810701072216034
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.07585817575454712
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.04336579889059067
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.12667709589004517
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.07396338135004044
  }
}
usage_metadata {
  prompt_token_count: 38
  candidates_token_count: 33
  total_token_count: 71
}

Objekte in Bildern identifizieren

Im folgenden Beispiel werden Objekte aus zwei Bildern ermittelt, die in Cloud Storage gespeichert sind.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "ARRAY",
    "items": {
        "type": "ARRAY",
        "items": {
            "type": "OBJECT",
            "properties": {
                "object": {"type": "STRING"},
            },
        },
    },
}

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    [
        # Text prompt
        "Generate a list of objects in the images.",
        # Http Image
        Part.from_uri(
            "https://storage.googleapis.com/cloud-samples-data/generative-ai/image/office-desk.jpeg",
            "image/jpeg",
        ),
        # Cloud storage object
        Part.from_uri(
            "gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg",
            "image/jpeg",
        ),
    ],
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     [
#         {"object": "globe"}, {"object": "tablet"}, {"object": "toy car"},
#         {"object": "airplane"}, {"object": "keyboard"}, {"object": "mouse"},
#         {"object": "passport"}, {"object": "sunglasses"}, {"object": "money"},
#         {"object": "notebook"}, {"object": "pen"}, {"object": "coffee cup"},
#     ],
#     [
#         {"object": "watering can"}, {"object": "plant"}, {"object": "flower pot"},
#         {"object": "gloves"}, {"object": "garden tool"},
#     ],
# ]

Beispiel für eine Modellantwort

candidates {
  content {
    role: "model"
    parts {
      text: "[\n    [\n        {\n            \"object\": \"globe model\"\n        },\n        {\n            \"object\": \"tablet computer\"\n        },\n        {\n            \"object\": \"shopping cart\"\n        },\n        {\n            \"object\": \"Eiffel Tower model\"\n        },\n        {\n            \"object\": \"airplane model\"\n        },\n        {\n            \"object\": \"coffee cup\"\n        },\n        {\n            \"object\": \"computer keyboard\"\n        },\n        {\n            \"object\": \"computer mouse\"\n        },\n        {\n            \"object\": \"passport\"\n        },\n        {\n            \"object\": \"sunglasses\"\n        },\n        {\n            \"object\": \"US Dollar bills\"\n        },\n        {\n            \"object\": \"notepad\"\n        },\n        {\n            \"object\": \"pen\"\n        }\n    ],\n    [\n        {\n            \"object\": \"watering can\"\n        },\n        {\n            \"object\": \"oregano\"\n        },\n        {\n            \"object\": \"flower pot\"\n        },\n        {\n            \"object\": \"flower pot\"\n        },\n        {\n            \"object\": \"gardening gloves\"\n        },\n        {\n            \"object\": \"hand rake\"\n        },\n        {\n            \"object\": \"hand trowel\"\n        },\n        {\n            \"object\": \"grass\"\n        }\n    ]\n] "
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.1872812658548355
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.16357900202274323
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: LOW
    probability_score: 0.37920594215393066
    severity: HARM_SEVERITY_LOW
    severity_score: 0.29320207238197327
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.14175598323345184
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.12074951827526093
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.12241825461387634
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.0955180674791336
  }
}
usage_metadata {
  prompt_token_count: 525
  candidates_token_count: 333
  total_token_count: 858
}

Mit einem einzelnen Nur-Text-Enum-Wert antworten

Im folgenden Beispiel wird das Genre eines Films anhand seiner Beschreibung ermittelt. Die Ausgabe ist ein Nur-Text-Enum-Wert, der vom Modell aus einer Liste von Werten ausgewählt wird, die im Antwortschema definiert sind.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-pro")

response_schema = {"type": "STRING", "enum": ["drama", "comedy", "documentary"]}

prompt = (
    "The film aims to educate and inform viewers about real-life subjects, events, or people."
    "It offers a factual record of a particular topic by combining interviews, historical footage, "
    "and narration. The primary purpose of a film is to present information and provide insights "
    "into various aspects of reality."
)

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="text/x.enum", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
#     'documentary'

Beispiel für eine Modellantwort

candidates {
  content {
    role: "model"
    parts {
      text: "documentary"
    }
  }
  finish_reason: STOP
  safety_ratings {
    category: HARM_CATEGORY_HATE_SPEECH
    probability: NEGLIGIBLE
    probability_score: 0.051025390625
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.08056640625
  }
  safety_ratings {
    category: HARM_CATEGORY_DANGEROUS_CONTENT
    probability: NEGLIGIBLE
    probability_score: 0.1416015625
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.068359375
  }
  safety_ratings {
    category: HARM_CATEGORY_HARASSMENT
    probability: NEGLIGIBLE
    probability_score: 0.11572265625
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.0439453125
  }
  safety_ratings {
    category: HARM_CATEGORY_SEXUALLY_EXPLICIT
    probability: NEGLIGIBLE
    probability_score: 0.099609375
    severity: HARM_SEVERITY_NEGLIGIBLE
    severity_score: 0.146484375
  }
  avg_logprobs: -8.783838711678982e-05
}
usage_metadata {
  prompt_token_count: 33
  candidates_token_count: 2
  total_token_count: 35
}