Vertex AI 플랫폼의 구성요소인 Vertex AI RAG Engine은 검색 증강 생성 (RAG)을 용이하게 합니다.
Vertex AI RAG Engine은 컨텍스트 증강 대규모 언어 모델 (LLM) 애플리케이션을 개발하기 위한 데이터 프레임워크이기도 합니다. 컨텍스트 증강은 데이터에 LLM을 적용할 때 발생합니다. 이는 검색 증강 생성(RAG)을 구현합니다.
LLM의 일반적인 문제는 비공개 지식, 즉 조직의 데이터를 이해하지 못한다는 것입니다. Vertex AI RAG Engine을 사용하면 추가 비공개 정보로 LLM 컨텍스트를 보강할 수 있습니다. 모델이 할루시네이션을 줄이고 질문에 더 정확하게 답변할 수 있기 때문입니다.
추가 지식 소스를 LLM이 보유한 기존 지식과 결합하여 더 나은 컨텍스트가 제공됩니다. 쿼리와 함께 개선된 컨텍스트는 LLM의 응답 품질을 향상시킵니다.
다음 이미지는 Vertex AI RAG 엔진을 이해하는 데 필요한 주요 개념을 보여줍니다.
이러한 개념은 검색 증강 생성(RAG) 프로세스 순서로 나열되어 있습니다.
데이터 수집: 다양한 데이터 소스에서 데이터를 수집합니다. 예를 들면 로컬 파일, Cloud Storage, Google Drive가 있습니다.
데이터 변환: 인덱싱을 준비하는 동안 데이터를 변환합니다. 예를 들어 데이터가 청크로 분할됩니다.
임베딩: 단어나 텍스트 조각을 숫자로 표현한 것입니다. 이 숫자는 텍스트의 의미론적 의미와 맥락을 캡처합니다. 유사하거나 관련된 단어 또는 텍스트는 임베딩이 비슷한 경향이 있습니다. 즉, 고차원 벡터 공간에서 더 가깝게 위치합니다.
데이터 색인 생성: Vertex AI RAG Engine은 코퍼스라는 색인을 만듭니다.
색인은 기술 자료를 구조화하므로 검색에 최적화되어 있습니다. 예를 들어, 색인은 방대한 참조 서적의 상세한 목차와 같습니다.
검색: 사용자가 질문하거나 프롬프트를 제공하면 Vertex AI RAG Engine의 검색 구성요소는 기술 자료를 통해 쿼리와 관련된 정보를 찾습니다.
생성: 검색된 정보는 생성 AI 모델이 사실에 근거하고 관련성 있는 응답을 생성하기 위한 가이드로 원래 사용자 쿼리에 추가된 컨텍스트가 됩니다.
지원되는 리전
Vertex AI RAG Engine은 다음 리전에서 지원됩니다.
리전
위치
설명
출시 단계
us-central1
아이오와
v1 및 v1beta1 버전이 지원됩니다.
허용 목록
us-east4
버지니아
v1 및 v1beta1 버전이 지원됩니다.
GA
europe-west3
독일 프랑크푸르트
v1 및 v1beta1 버전이 지원됩니다.
GA
europe-west4
네덜란드 엠스하벤
v1 및 v1beta1 버전이 지원됩니다.
GA
us-central1가 Allowlist로 변경됩니다. Vertex AI RAG Engine을 실험하려면 다른 리전을 사용해 보세요. 프로덕션 트래픽을 us-central1에 온보딩할 계획이라면 vertex-ai-rag-engine-support@google.com에 문의하세요.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[],[],null,["# Vertex AI RAG Engine overview\n\n| The [VPC-SC security controls](/vertex-ai/generative-ai/docs/security-controls) and\n| CMEK are supported by Vertex AI RAG Engine. Data residency and AXT security controls aren't\n| supported.\n| You must be added to the allowlist to access\n| Vertex AI RAG Engine in `us-central1`. For users\n| with existing projects, there is no impact. For users with new projects, you\n| can try other regions, or contact\n| `vertex-ai-rag-engine-support@google.com` to onboard to\n| `us-central1`.\n\nThis page describes what Vertex AI RAG Engine is and how it\nworks.\n\nOverview\n--------\n\nVertex AI RAG Engine, a component of the Vertex AI\nPlatform, facilitates Retrieval-Augmented Generation (RAG).\nVertex AI RAG Engine is also a data framework for developing\ncontext-augmented large language model (LLM) applications. Context augmentation\noccurs when you apply an LLM to your data. This implements retrieval-augmented\ngeneration (RAG).\n\nA common problem with LLMs is that they don't understand private knowledge, that\nis, your organization's data. With Vertex AI RAG Engine, you can\nenrich the LLM context with additional private information, because the model\ncan reduce hallucination and answer questions more accurately.\n\nBy combining additional knowledge sources with the existing knowledge that LLMs\nhave, a better context is provided. The improved context along with the query\nenhances the quality of the LLM's response.\n\nThe following image illustrates the key concepts to understanding\nVertex AI RAG Engine.\n\nThese concepts are listed in the order of the retrieval-augmented generation\n(RAG) process.\n\n1. **Data ingestion**: Intake data from different data sources. For example,\n local files, Cloud Storage, and Google Drive.\n\n2. [**Data transformation**](/vertex-ai/generative-ai/docs/fine-tune-rag-transformations):\n Conversion of the data in preparation for indexing. For example, data is\n split into chunks.\n\n3. [**Embedding**](/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings): Numerical\n representations of words or pieces of text. These numbers capture the\n semantic meaning and context of the text. Similar or related words or text\n tend to have similar embeddings, which means they are closer together in the\n high-dimensional vector space.\n\n4. **Data indexing** : Vertex AI RAG Engine creates an index called a [corpus](/vertex-ai/generative-ai/docs/manage-your-rag-corpus#corpus-management).\n The index structures the knowledge base so it's optimized for searching. For\n example, the index is like a detailed table of contents for a massive\n reference book.\n\n5. **Retrieval**: When a user asks a question or provides a prompt, the retrieval\n component in Vertex AI RAG Engine searches through its knowledge\n base to find information that is relevant to the query.\n\n6. **Generation** : The retrieved information becomes the context added to the\n original user query as a guide for the generative AI model to generate\n factually [grounded](/vertex-ai/generative-ai/docs/grounding/overview) and relevant responses.\n\nSupported regions\n-----------------\n\nVertex AI RAG Engine is supported in the following regions:\n\n- `us-central1` is changed to `Allowlist`. If you'd like to experiment with Vertex AI RAG Engine, try other regions. If you plan to onboard your production traffic to `us-central1`, contact `vertex-ai-rag-engine-support@google.com`.\n\nSubmit feedback\n---------------\n\nTo chat with Google support, go to the [Vertex AI RAG Engine\nsupport\ngroup](https://groups.google.com/a/google.com/g/vertex-ai-rag-engine-support).\n\nTo send an email, use the email address\n`vertex-ai-rag-engine-support@google.com`.\n\nWhat's next\n-----------\n\n- To learn how to use the Vertex AI SDK to run Vertex AI RAG Engine tasks, see [RAG quickstart for\n Python](/vertex-ai/generative-ai/docs/rag-quickstart).\n- To learn about grounding, see [Grounding\n overview](/vertex-ai/generative-ai/docs/grounding/overview).\n- To learn more about the responses from RAG, see [Retrieval and Generation Output of Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/model-reference/rag-output-explained).\n- To learn about the RAG architecture:\n - [Infrastructure for a RAG-capable generative AI application using Vertex AI and Vector Search](/architecture/gen-ai-rag-vertex-ai-vector-search)\n - [Infrastructure for a RAG-capable generative AI application using Vertex AI and AlloyDB for PostgreSQL](/architecture/rag-capable-gen-ai-app-using-vertex-ai)."]]