Este documento descreve como usar instruções do sistema. Para saber o que são instruções do sistema e as práticas recomendadas para usá-las, consulte Introdução às instruções do sistema.
As instruções do sistema são um conjunto de instruções que o modelo processa antes de processar comandos. Recomendamos que você use instruções do sistema para informar ao modelo como você quer que ele se comporte e responda aos comandos. Por exemplo, você pode incluir itens como o papel ou perfil, informações contextuais e instruções de formatação:
You are a friendly and helpful assistant.
Ensure your answers are complete, unless the user requests a more concise approach.
When generating code, offer explanations for code segments as necessary and maintain good coding practices.
When presented with inquiries seeking information, provide answers that reflect a deep understanding of the field, guaranteeing their correctness.
For any non-english queries, respond in the same language as the prompt unless otherwise specified by the user.
For prompts involving reasoning, provide a clear explanation of each step in the reasoning process before presenting the final answer.
Quando uma instrução de sistema é definida, ela é aplicada a toda a solicitação. Quando incluída no comando, ela funciona com vários usuários e mutações do modelo. Embora as instruções do sistema sejam separadas do conteúdo do comando, elas ainda fazem parte dos comandos gerais e, portanto, estão sujeitas às políticas padrão de uso de dados.
Modelos compatíveis
Os seguintes modelos são compatíveis com instruções do sistema:
- Todas as versões do modelo Gemini 1.5 Pro
- Todas as versões do modelo Gemini 1.5 Flash
- Gemini 1.0 Pro versão
gemini-1.0-pro-002
Se você estiver usando um modelo diferente, consulte Atribuir um papel.
Casos de uso
É possível usar as instruções de sistema de várias maneiras como, por exemplo:
- Definir um perfil ou uma função (para um chatbot, por exemplo)
- Definir o formato de saída (Markdown, YAML etc.)
- Definir o estilo e o tom da saída (por exemplo, nível de detalhes, de formalidade e de leitura desejado)
- Definir metas ou regras para a tarefa (por exemplo, retornar um snippet de código sem mais explicações)
- Fornecer mais contexto para o comando (por exemplo, um limite de conhecimento)
Especificar em qual idioma o modelo deve responder. Às vezes, os modelos podem responder no idioma local, mesmo que o comando esteja escrito em outro idioma. Quando você usa um idioma diferente do inglês para os comandos, recomendamos adicionar o seguinte às instruções do sistema:
All questions should be answered comprehensively with details, unless the user requests a concise response specifically. Respond in the same language as the query.
Amostras de código
Os exemplos de código nas guias a seguir demonstram como usar instruções do sistema no seu aplicativo de IA generativa.
Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o parâmetro stream
em
generate_content
.
response = model.generate_content(contents=[...], stream = True)
Para uma resposta que não seja de streaming, remova o parâmetro ou defina-o como False
.
Código de amostra
Node.js
Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido da IA generativa usando o SDK do Node.js. Para mais informações, consulte a documentação de referência do SDK do Node.js para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
generateContentStream
.
const streamingResp = await generativeModel.generateContentStream(request);
Para uma resposta que não seja de streaming, use o método generateContent
.
const streamingResp = await generativeModel.generateContent(request);
Código de amostra
Java
Antes de testar esta amostra, siga as instruções de configuração do Java no guia de início rápido da Vertex AI. Para mais informações, consulte a documentação de referência do SDK da Vertex AI para Java para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
generateContentStream
.
public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
Para uma resposta que não seja de streaming, use o método generateContent
.
public GenerateContentResponse generateContent(Content content)
Código de amostra
Go
Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido da Vertex AI. Para mais informações, consulte a documentação de referência do SDK da Vertex AI para Go para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
GenerateContentStream
.
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
Para uma resposta que não seja de streaming, use o método GenerateContent
.
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
Código de amostra
C#
Antes de testar este exemplo, siga as instruções de configuração do C# na Vertex AI guia de início rápido. Para mais informações, consulte a documentação de referência da Vertex AI C# .
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
StreamGenerateContent
.
public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
Para uma resposta que não seja de streaming, use o método GenerateContentAsync
.
public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
Para mais informações sobre como o servidor pode transmitir respostas, consulte RPCs de streaming.
Código de amostra
REST
Depois de configurou seu ambiente use REST para testar uma solicitação de texto. O exemplo a seguir envia uma solicitação ao publisher endpoint do modelo.
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
GENERATE_RESPONSE_METHOD
: o tipo de resposta que você quer que o modelo gere. Escolha um método que gere como você quer que a resposta do modelo seja retornada:streamGenerateContent
: a resposta é transmitida conforme é gerada para reduzir a percepção de latência para o público humano.generateContent
: a resposta será retornada depois de ser totalmente gerada.
LOCATION
: a região para processar a solicitação. As opções disponíveis incluem:Clicar para abrir uma lista parcial das regiões disponíveis
us-central1
us-west4
northamerica-northeast1
us-east4
us-west1
asia-northeast3
asia-southeast1
asia-northeast1
PROJECT_ID
: o ID do projeto.MODEL_ID
: o ID do modelo multimodal que você quer usar. Algumas opções incluem:gemini-1.0-pro-002
gemini-1.0-pro-vision-001
gemini-1.5-pro-002
gemini-1.5-flash
ROLE
: o papel em uma conversa associada ao conteúdo. É necessário especificar um papel mesmo em casos de uso de turno único. Os valores aceitáveis são os seguintes:USER
: especifica o conteúdo que é enviado por você.MODEL
: especifica a resposta do modelo.
As instruções de texto a serem incluídas no comando. Por exemplo,TEXT
User input: I like bagels
.SAFETY_CATEGORY
: a categoria de segurança para a qual configurar um limite. Os valores aceitáveis são os seguintes:Clique para expandir as categorias de segurança
HARM_CATEGORY_SEXUALLY_EXPLICIT
HARM_CATEGORY_HATE_SPEECH
HARM_CATEGORY_HARASSMENT
HARM_CATEGORY_DANGEROUS_CONTENT
THRESHOLD
: o limite de bloqueio de respostas que podem pertencer à categoria de segurança especificada com base na probabilidade. Os valores aceitáveis são os seguintes:Clique para expandir os limites de bloqueio
BLOCK_NONE
BLOCK_ONLY_HIGH
BLOCK_MEDIUM_AND_ABOVE
(padrão)BLOCK_LOW_AND_ABOVE
BLOCK_LOW_AND_ABOVE
bloqueia mais, eBLOCK_ONLY_HIGH
bloqueia a menor. (opcional) Não disponível para todos os modelos. Instruções para o modelo gerar um desempenho melhor. O JSON não oferece suporte a quebras de linha. Substitua todos os quebras de linha neste campo porSYSTEM_INSTRUCTION
\n
. Por exemplo:You are a helpful language translator.\nYour mission is to translate text in English to French.
.TEMPERATURE
: a temperatura é usada para amostragem durante a geração da resposta, que ocorre quandotopP
etopK
são aplicados. A temperatura controla o grau de aleatoriedade na seleção do token. Temperaturas mais baixas são boas para solicitações que exigem uma resposta menos aberta ou criativa, enquanto temperaturas mais altas podem levar a resultados mais diversos ou criativos. Uma temperatura de0
significa que os tokens de maior probabilidade são sempre selecionados. Nesse caso, as respostas para uma determinada solicitação são, na maioria das vezes, deterministas, mas uma pequena variação ainda é possível.Se o modelo retornar uma resposta muito genérica, muito curta ou se o modelo fornecer uma resposta alternativa, tente aumentar a temperatura.
TOP_P
: o Top-P muda a forma como o modelo seleciona tokens para saída. Os tokens são selecionados do mais provável (veja o top-K) para o menos provável até que a soma das probabilidades seja igual ao valor do top-P. Por exemplo, se os tokens A, B e C tiverem uma probabilidade de 0,3, 0,2 e 0,1 e o valor de top-P for0.5
, o modelo selecionará A ou B como token seguinte usando temperatura e exclui C como candidato.Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
TOP_K
: o Top-K muda a forma como o modelo seleciona tokens para saída. Um top-K de1
significa que o próximo token selecionado é o mais provável entre todos os tokens no vocabulário do modelo (também chamado de decodificação gananciosa), enquanto um top-K de3
significa que o próximo token está selecionado entre os três tokens mais prováveis usando a temperatura.Para cada etapa da seleção de tokens, são amostrados os tokens top-K com as maiores probabilidades. Em seguida, os tokens são filtrados com base no valor de top-P com o token final selecionado por meio da amostragem de temperatura.
Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
MAX_OUTPUT_TOKENS
: número máximo de tokens que podem ser gerados na resposta. Um token tem cerca de quatro caracteres. 100 tokens correspondem a cerca de 60 a 80 palavras.Especifique um valor mais baixo para respostas mais curtas e um valor mais alto para respostas potencialmente mais longas.
STOP_SEQUENCES
: especifica uma lista de strings que instrui o modelo a parar de gerar texto se uma das strings for encontrada na resposta. Se uma string aparecer várias vezes na resposta, a resposta truncará quando for encontrada pela primeira vez. As strings diferenciam maiúsculas de minúsculas.
Por exemplo, se a resposta a seguir for retornada quandostopSequences
não for especificado:
public static string reverse(string myString)
A resposta retornada comstopSequences
definida como["Str", "reverse"]
é:
public static string
Especifique uma matriz vazia ([]
) para desativar as sequências de parada.
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo chamado request.json
.
Execute o comando a seguir no terminal para criar ou substituir
esse arquivo no diretório atual:
cat > request.json << 'EOF' { "contents": { "role": "ROLE", "parts": { "text": "TEXT" } }, "system_instruction": { "parts": [ { "text": "SYSTEM_INSTRUCTION" } ] }, "safety_settings": { "category": "SAFETY_CATEGORY", "threshold": "THRESHOLD" }, "generation_config": { "temperature": TEMPERATURE, "topP": TOP_P, "topK": TOP_K, "candidateCount": 1, "maxOutputTokens": MAX_OUTPUT_TOKENS, "stopSequences": STOP_SEQUENCES } } EOF
Depois execute o comando a seguir para enviar a solicitação REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD"
PowerShell
Salve o corpo da solicitação em um arquivo chamado request.json
.
Execute o comando a seguir no terminal para criar ou substituir
esse arquivo no diretório atual:
@' { "contents": { "role": "ROLE", "parts": { "text": "TEXT" } }, "system_instruction": { "parts": [ { "text": "SYSTEM_INSTRUCTION" } ] }, "safety_settings": { "category": "SAFETY_CATEGORY", "threshold": "THRESHOLD" }, "generation_config": { "temperature": TEMPERATURE, "topP": TOP_P, "topK": TOP_K, "candidateCount": 1, "maxOutputTokens": MAX_OUTPUT_TOKENS, "stopSequences": STOP_SEQUENCES } } '@ | Out-File -FilePath request.json -Encoding utf8
Depois execute o comando a seguir para enviar a solicitação REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:GENERATE_RESPONSE_METHOD" | Select-Object -Expand Content
Você receberá uma resposta JSON semelhante a seguinte.
Observe o seguinte no URL deste exemplo:- Use o
generateContent
para solicitar que a resposta seja retornada depois de ser totalmente gerada. Para reduzir a percepção de latência ao público humano, transmita a resposta à medida que geradas usando ostreamGenerateContent
. - O ID do modelo multimodal está localizado no final do URL, antes do método
Por exemplo,
gemini-1.5-flash
ougemini-1.0-pro-vision
). Este exemplo pode oferecer suporte a outras modelos de classificação.
Exemplos de prompt
Veja um exemplo básico de configuração da instrução do sistema usando o SDK do Python para a API Gemini:
model=genai.GenerativeModel(
model_name="gemini-1.5-pro-002",
system_instruction="You are a cat. Your name is Neko.")
Veja a seguir exemplos de comandos de sistema que definem o comportamento esperado do modelo.
Geração de códigos
Geração de códigos |
---|
You are a coding expert that specializes in rendering code for front-end interfaces. When I describe a component of a website I want to build, please return the HTML and CSS needed to do so. Do not give an explanation for this code. Also offer some UI design suggestions. Create a box in the middle of the page that contains a rotating selection of images each with a caption. The image in the center of the page should have shadowing behind it to make it stand out. It should also link to another page of the site. Leave the URL blank so that I can fill it in. |
Geração de dados formatados
Geração de dados formatados |
---|
You are an assistant for home cooks. You receive a list of ingredients and respond with a list of recipes that use those ingredients. Recipes which need no extra ingredients should always be listed before those that do. Your response must be a JSON object containing 3 recipes. A recipe object has the following schema: * name: The name of the recipe * usedIngredients: Ingredients in the recipe that were provided in the list * otherIngredients: Ingredients in the recipe that were not provided in the list (omitted if there are no other ingredients) * description: A brief description of the recipe, written positively as if to sell it * 1 lb bag frozen broccoli * 1 pint heavy cream * 1 lb pack cheese ends and pieces |
Chatbot de música
Chatbot de música |
---|
You will respond as a music historian, demonstrating comprehensive knowledge across diverse musical genres and providing relevant examples. Your tone will be upbeat and enthusiastic, spreading the joy of music. If a question is not related to music, the response should be, "That is beyond my knowledge." If a person was born in the sixties, what was the most popular music genre being played when they were born? List five songs by bullet point. |
Análise financeira
Análise financeira |
---|
As a financial analysis expert, your role is to interpret complex financial data, offer personalized advice, and evaluate investments using statistical methods to gain insights across different financial areas. Accuracy is the top priority. All information, especially numbers and calculations, must be correct and reliable. Always double-check for errors before giving a response. The way you respond should change based on what the user needs. For tasks with calculations or data analysis, focus on being precise and following instructions rather than giving long explanations. If you're unsure, ask the user for more information to ensure your response meets their needs. For tasks that are not about numbers: * Use clear and simple language to avoid confusion and don't use jargon. * Make sure you address all parts of the user's request and provide complete information. * Think about the user's background knowledge and provide additional context or explanation when needed. Formatting and Language: * Follow any specific instructions the user gives about formatting or language. * Use proper formatting like JSON or tables to make complex data or results easier to understand. Please summarize the key insights of given numerical tables. CONSOLIDATED STATEMENTS OF INCOME (In millions, except per share amounts) |Year Ended December 31 | 2020 | 2021 | 2022 | |--- | --- | --- | --- | |Revenues | $ 182,527| $ 257,637| $ 282,836| |Costs and expenses:| |Cost of revenues | 84,732 | 110,939 | 126,203| |Research and development | 27,573 | 31,562 | 39,500| |Sales and marketing | 17,946 | 22,912 | 26,567| |General and administrative | 11,052 | 13,510 | 15,724| |Total costs and expenses | 141,303| 178,923| 207,994| |Income from operations | 41,224 | 78,714 | 74,842| |Other income (expense), net | 6,858 | 12,020 | (3,514)| |Income before income taxes | 48,082 | 90,734 | 71,328| |Provision for income taxes | 7,813 | 14,701 | 11,356| |Net income | $40,269| $76,033 | $59,972| |Basic net income per share of Class A, Class B, and Class C stock | $2.96| $5.69| $4.59| |Diluted net income per share of Class A, Class B, and Class C stock| $2.93| $5.61| $4.56| Please list important, but no more than five, highlights from 2020 to 2022 in the given table. Please write in a professional and business-neutral tone. The summary should only be based on the information presented in the table. |
Análise de sentimento do mercado
Análise de sentimento do mercado |
---|
You are a stock market analyst who analyzes market sentiment given a news snippet. Based on the news snippet, you extract statements that impact investor sentiment. Respond in JSON format and for each statement: * Give a score 1 - 10 to suggest if the sentiment is negative or positive (1 is most negative 10 is most positive, 5 will be neutral). * Reiterate the statement. * Give a one sentence explanation. Mobileye reported a build-up of excess inventory by top-tier customers following supply-chain constraints in recent years. Revenue for the first quarter is expected to be down about 50% from $458 million generated a year earlier, before normalizing over the remainder of 2024, Mobileye said. Mobileye forecast revenue for full-year 2024 at between $1.83 billion and $1.96 billion, down from the about $2.08 billion it now expects for 2023. |
A seguir
- Confira mais exemplos de comandos na galeria de comandos.