本文档介绍如何使用 Vertex AI 文本嵌入 API 创建文本嵌入。
Vertex AI 文本嵌入 API 使用密集向量表示法:例如,text-embedding-gecko 使用 768 维向量。密集向量嵌入模型使用与大语言模型所用方法类似的深度学习方法。与倾向于将字词直接映射到数字的稀疏向量不同,密集向量旨在更好地表示一段文本的含义。在生成式 AI 中使用密集向量嵌入的优势在于,您可以更好地搜索与查询含义相符的段落,而不是搜索直接的字词或语法匹配项,即使段落不使用相同的语言也是如此。
这些向量已进行标准化处理,因此您可以使用余弦相似度、点积或欧几里得距离来提供相同的相似度排名。
准备工作
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Enable the Vertex AI API.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Enable the Vertex AI API.
- 为嵌入作业选择任务类型。
支持的模型
您可以使用以下模型获取文本嵌入:
英语模型 | 多语言模型 |
---|---|
textembedding-gecko@001 |
textembedding-gecko-multilingual@001 |
textembedding-gecko@002 |
text-multilingual-embedding-002 |
textembedding-gecko@003 |
|
text-embedding-004 |
|
text-embedding-005 |
如果您刚开始接触这些模型,我们建议您使用最新版本。对于英语文本,请使用 text-embedding-005
。对于多语言文本,请使用 text-multilingual-embedding-002
。
获取文本片段的文本嵌入
您可以使用 Vertex AI API 或 Python 版 Vertex AI SDK 获取文本片段的文本嵌入。对于每个请求,在 us-central1
,输入文本上限为 250 个,而在其他区域,输入文本数上限为 5。
API 的输入词元数量上限为 20,000。超出此限制的输入将导致 500 错误。每个输入文本进一步限制为 2048 个词元;任何多余的内容都会以静默方式截断。您还可以通过将 autoTruncate
设置为 false
来停用静默截断。
默认情况下,所有模型都会生成具有 768 个维度的输出。不过,以下模型可让用户选择 1 到 768 之间的输出维数。通过选择较小的输出维度,用户可以节省内存和存储空间,从而实现更高效的计算。
text-embedding-005
text-multilingual-embedding-002
以下示例使用 text-embedding-005
模型。
Gen AI SDK for Python
了解如何安装或更新 Google Gen AI SDK for Python。
如需了解详情,请参阅 Gen AI SDK for Python API 参考文档或 python-genai
GitHub 代码库。
设置环境变量以将 Gen AI SDK 与 Vertex AI 搭配使用:
# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values # with appropriate values for your project. export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT export GOOGLE_CLOUD_LOCATION=us-central1 export GOOGLE_GENAI_USE_VERTEXAI=True
Python 版 Vertex AI SDK
如需了解如何安装或更新 Vertex AI SDK for Python,请参阅安装 Vertex AI SDK for Python。 如需了解详情,请参阅 Python 版 Vertex AI SDK API 参考文档。
Go
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Go 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Go API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Java
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Java 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Java API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
Node.js
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Node.js 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Node.js API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
将嵌入添加到向量数据库
生成嵌入后,您可以将嵌入添加到向量数据库,例如 Vector Search。这样可以实现低延迟检索,并且随着数据规模扩大,这一点至关重要。
如需详细了解 Vector Search,请参阅 Vector Search 概览。
后续步骤
- 如需详细了解速率限制,请参阅 Vertex AI 上的生成式 AI 速率限制。
- 如需获取嵌入的批量预测结果,请参阅获取批量文本嵌入预测结果
- 如需详细了解多模态嵌入,请参阅获取多模态嵌入
- 如需调优嵌入,请参阅调优文本嵌入
- 如需详细了解
text-embedding-005
和text-multilingual-embedding-002
背后的研究,请参阅研究论文 Gecko:从大语言模型中蒸馏的多功能文本嵌入。