Batch-Text-Embeddings-Vorhersagen abrufen

Antworten als Stapel zu erhalten ist eine effiziente Art, eine große Anzahl von nicht-latenzempfindlichen Anfragen für embeddings zu senden. Im Gegensatz zur Onlineantworten, bei der jeweils nur eine Eingabeanfrage gleichzeitig möglich ist, können Sie eine große Anzahl von LLM-Anfragen in einer einzelnen Batchanfrage senden. Ähnlich wie die Batchvorhersage für tabellarische Daten in Vertex AI legen Sie den Ausgabespeicherort fest, fügen Ihre Eingabe hinzu und die Antworten werden asynchron in Ihren Ausgabespeicherort übernommen.

Texteinbettungsmodelle, die Batchvorhersagen unterstützen

Alle stabilen Versionen von Modelleinbettungsmodellen unterstützen Batchvorhersagen, mit Ausnahme von textembedding-gecko-multilingual@001. Stabile Versionen sind Versionen, die nicht mehr in der Vorabversion sind und in Produktionsumgebungen vollständig unterstützt werden. Eine vollständige Liste der unterstützten Einbettungsmodelle finden Sie unter Einbettungsmodell und -versionen.

Eingaben vorbereiten

Die Eingabe für Batchanfragen ist eine Liste an Eingabeaufforderungen, die entweder in einer BigQuery-Tabelle oder als JSON-Lieniendatei (JSONL) in Cloud Storage gespeichert werden können. Jede Anfrage kann bis zu 30.000 Anfragen enthalten.

JSONL-Beispiel

In diesem Abschnitt wird anhand von Beispielen gezeigt, wie Sie JSONL-Eingaben und -Ausgaben formatieren.

JSONL-Eingabebeispiel

{"content":"Give a short description of a machine learning model:"}
{"content":"Best recipe for banana bread:"}

JSONL-Ausgabebeispiel

{"instance":{"content":"Give..."},"predictions": [{"embeddings":{"statistics":{"token_count":8,"truncated":false},"values":[0.2,....]}}],"status":""}
{"instance":{"content":"Best..."},"predictions": [{"embeddings":{"statistics":{"token_count":3,"truncated":false},"values":[0.1,....]}}],"status":""}

BigQuery-Beispiel

In diesem Abschnitt wird anhand von Beispielen gezeigt, wie Sie BigQuery-Eingaben und -Ausgaben formatieren.

BigQuery-Eingabebeispiel

Dieses Beispiel zeigt eine BigQuery-Tabelle mit einer einzigen Spalte.

Inhalt
„Kurze Beschreibung eines ML-Modells angeben:”
„Das beste Rezept für Bananenbrot:“

BigQuery-Ausgabebeispiel

Inhalt Vorhersagen Status
„Kurze Beschreibung eines ML-Modells angeben:”
'[{"embeddings":
    { "statistics":{"token_count":8,"truncated":false},
      "Values":[0.1,....]
    }
  }
]'
 
„Das beste Rezept für Bananenbrot:“
'[{"embeddings":
    { "statistics":{"token_count":3,"truncated":false},
      "Values":[0.2,....]
    }
  }
]'

Batchantwort anfordern

Abhängig von der Anzahl der Eingabeelemente, die Sie eingereicht haben, kann die Batchvgenerierung eine Weile dauern.

REST

Senden Sie zum Testen eines Text-Prompts mit der Vertex AI API eine POST-Anfrage an den Endpunkt des Publisher-Modells.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Die ID Ihres Google Cloud Projekts.
  • BP_JOB_NAME: Name des Jobs.
  • INPUT_URI: Der URI der Eingabequelle. Dies ist entweder ein BigQuery-Tabellen-URI oder ein JSONL-Datei-URI in Cloud Storage.
  • OUTPUT_URI: Ausgabeziel-URI.

HTTP-Methode und URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs

JSON-Text der Anfrage:

{
    "name": "BP_JOB_NAME",
    "displayName": "BP_JOB_NAME",
    "model": "publishers/google/models/textembedding-gecko",
    "inputConfig": {
      "instancesFormat":"bigquery",
      "bigquerySource":{
        "inputUri" : "INPUT_URI"
      }
    },
    "outputConfig": {
      "predictionsFormat":"bigquery",
      "bigqueryDestination":{
        "outputUri": "OUTPUT_URI"
    }
  }
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs" | Select-Object -Expand Content

Sie sollten eine JSON-Antwort ähnlich wie diese erhalten:

{
  "name": "projects/123456789012/locations/us-central1/batchPredictionJobs/1234567890123456789",
  "displayName": "BP_sample_publisher_BQ_20230712_134650",
  "model": "projects/{PROJECT_ID}/locations/us-central1/models/textembedding-gecko",
  "inputConfig": {
    "instancesFormat": "bigquery",
    "bigquerySource": {
      "inputUri": "bq://project_name.dataset_name.text_input"
    }
  },
  "modelParameters": {},
  "outputConfig": {
    "predictionsFormat": "bigquery",
    "bigqueryDestination": {
      "outputUri": "bq://project_name.llm_dataset.embedding_out_BP_sample_publisher_BQ_20230712_134650"
    }
  },
  "state": "JOB_STATE_PENDING",
  "createTime": "2023-07-12T20:46:52.148717Z",
  "updateTime": "2023-07-12T20:46:52.148717Z",
  "labels": {
    "owner": "sample_owner",
    "product": "llm"
  },
  "modelVersionId": "1",
  "modelMonitoringStatus": {}
}

Die Antwort enthält eine eindeutige Kennung für den Batchjob. Sie können den Status des Batch-Jobs mit BATCH_JOB_ID abfragen, bis der Job state den Wert JOB_STATE_SUCCEEDED hat. Beispiel:

curl \
  -X GET \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID

Gen AI SDK für Python

Informationen zum Installieren oder Aktualisieren des Google Gen AI SDK for Python
Weitere Informationen finden Sie in der Referenzdokumentation zur Gen AI SDK for Python API oder im python-genaiGitHub-Repository.
Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=us-central1
export GOOGLE_GENAI_USE_VERTEXAI=True

import time

from google import genai
from google.genai.types import CreateBatchJobConfig, JobState, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
# TODO(developer): Update and un-comment below line
# output_uri = "gs://your-bucket/your-prefix"

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.batches.Batches.create
job = client.batches.create(
    model="text-embedding-005",
    # Source link: https://storage.cloud.google.com/cloud-samples-data/generative-ai/embeddings/embeddings_input.jsonl
    src="gs://cloud-samples-data/generative-ai/embeddings/embeddings_input.jsonl",
    config=CreateBatchJobConfig(dest=output_uri),
)
print(f"Job name: {job.name}")
print(f"Job state: {job.state}")
# Example response:
# Job name: projects/%PROJECT_ID%/locations/us-central1/batchPredictionJobs/9876453210000000000
# Job state: JOB_STATE_PENDING

# See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.types.BatchJob
completed_states = {
    JobState.JOB_STATE_SUCCEEDED,
    JobState.JOB_STATE_FAILED,
    JobState.JOB_STATE_CANCELLED,
    JobState.JOB_STATE_PAUSED,
}

while job.state not in completed_states:
    time.sleep(30)
    job = client.batches.get(name=job.name)
    print(f"Job state: {job.state}")
    if job.state == JobState.JOB_STATE_FAILED:
        print(f"Error: {job.error}")
        break

# Example response:
# Job state: JOB_STATE_PENDING
# Job state: JOB_STATE_RUNNING
# Job state: JOB_STATE_RUNNING
# ...
# Job state: JOB_STATE_SUCCEEDED

Vertex AI SDK für Python

Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.

import vertexai

from vertexai.preview import language_models

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")
input_uri = (
    "gs://cloud-samples-data/generative-ai/embeddings/embeddings_input.jsonl"
)
# Format: `"gs://your-bucket-unique-name/directory/` or `bq://project_name.llm_dataset`
output_uri = OUTPUT_URI

textembedding_model = language_models.TextEmbeddingModel.from_pretrained(
    "textembedding-gecko@003"
)

batch_prediction_job = textembedding_model.batch_predict(
    dataset=[input_uri],
    destination_uri_prefix=output_uri,
)
print(batch_prediction_job.display_name)
print(batch_prediction_job.resource_name)
print(batch_prediction_job.state)
# Example response:
# BatchPredictionJob 2024-09-10 15:47:51.336391
# projects/1234567890/locations/us-central1/batchPredictionJobs/123456789012345
# JobState.JOB_STATE_SUCCEEDED

Batchausgabe abrufen

Wenn eine Batchvorhersage abgeschlossen ist, wird die Ausgabe im Cloud Storage-Bucket oder in der BigQuery-Tabelle gespeichert, die Sie in der Anfrage angegeben haben.

Nächste Schritte