Descripción general del balanceo de cargas avanzado
El balanceo de cargas avanzado consta de funciones que te permiten ajustar las cargas globales y la distribución del tráfico para satisfacer mejor tu disponibilidad, rendimiento y los objetivos de rentabilidad. Este documento está dirigido a usuarios que tengan, al menos un conocimiento intermedio de los conceptos de Cloud Service Mesh y el balanceo de cargas.
Para implementar el balanceo de cargas avanzado, creas una política de balanceo de cargas de servicio (recurso serviceLbPolicies
), que contiene valores que influyen en la selección de un backend. Luego, adjunta la política de balanceo de cargas de servicios a un servicio de
backend. La política de balanceo de cargas de servicios especifica el algoritmo que se usa para
determinar cómo se balancea el tráfico a los backends.
Puedes elegir entre las siguientes opciones de algoritmo para el balanceo de cargas avanzado:
- Cascada por región (algoritmo predeterminado)
- Aplica el aerosol en la región.
- Difundir al mundo
- Cascada por zona.
Están disponibles las siguientes opciones adicionales:
- Designa backends preferidos. Cloud Service Mesh envía tráfico a esos MIG o NEG antes de enviar tráfico a otros backends.
- Configura el vaciado automático de la capacidad.
- Personaliza el comportamiento de la conmutación por error.
Antes de configurar cualquiera de las opciones avanzadas de balanceo de cargas, te recomendamos que revises la documentación del recurso de servicio de backend.
Cómo Cloud Service Mesh enruta y balancea las cargas del tráfico
En el siguiente diagrama, se muestra cómo Cloud Service Mesh decide enrutar el tráfico.
Primero, Cloud Service Mesh elige servicios de backend en función de
y se basan en reglas de enrutamiento en el recurso Route
o el mapa de URL
según la API que use tu implementación.
En segundo lugar, Cloud Service Mesh elige un MIG o NEG de backend asociado con el servicio de backend, según la ubicación del cliente, la ubicación, el estado y la capacidad del MIG o NEG, y la información de la política de balanceo de cargas del servicio asociada con el servicio de backend.
Por último, Cloud Service Mesh elige una instancia o un extremo dentro del MIG o NEG. Esta elección se basa en la información de la política de balanceo de cargas de la localidad en los servicios de backend.
Backends compatibles y no compatibles
Los siguientes tipos de backend son compatibles con el balanceo de cargas avanzado:
- Grupos de instancias no administrados
- Grupos de instancias administrados (MIG)
- Grupos de extremos de red por zonas (NEG de GCE_VM_IP_PORT)
- Grupos de extremos de red de conectividad híbrida (NON_GCP_PRIVATE_IP_PORT NEG)
Los siguientes tipos de backend no son compatibles con el balanceo de cargas avanzado:
- Grupos de instancias administrados regionales
- Grupos de extremos de red de Internet (NEG de INTERNET_FQDN_PORT)
Casos de uso
En las siguientes secciones, se describe cómo funciona cada algoritmo y cuál elegir según tus necesidades empresariales particulares.
Balancea el tráfico entre los backends de una región
El algoritmo de balanceo de cargas predeterminado, en cascada por región, distribuye tráfico de manera uniforme en todos los MIG o NEG en las zonas de una región. Recomendaciones el algoritmo predeterminado, a menos que tenga requisitos especiales.
Con la cascada por región, los backends reciben tráfico en proporción a su capacidad, lo que proporciona protección contra sobrecargas. El tráfico se envía a través de los límites de zona cuando es necesario para mantener los backends cargados de manera uniforme dentro de la región. Incluso si la zona local del cliente tiene capacidad restante, hay es el tráfico entre zonas. Las solicitudes de cada cliente se pueden distribuir en varios MIG o NEG zonales de la región, lo que ayuda a mantener la carga en los MIG o NEG uniforme cuando la carga de tráfico de los clientes no es uniforme.
Aumenta la resiliencia mediante la distribución del tráfico de un cliente entre las zonas
El algoritmo predeterminado de cascada por región intenta equilibrar el uso de la capacidad en varios MIG o NEG zonales. Sin embargo, según ese algoritmo, las solicitudes que provienen de un solo cliente no se envían de forma coherente a todas las zonas las solicitudes de un solo cliente, por lo general, se enrutan a MIG o NEG en un solo zona.
Usa el algoritmo de distribución en la región cuando desees que los clientes distribuyan sus solicitudes a todos los MIG o NEG de una región, lo que reduce el riesgo de sobrecargar los MIG o NEG en una sola zona cuando hay un aumento rápido y localizado en el volumen de tráfico.
Con el algoritmo de distribución de tráfico a la región, si tienes dos zonas, A y B, y hay un aumento repentino del tráfico en la zona B, el tráfico se dividirá entre las dos zonas. Con el algoritmo predeterminado, un aumento repentino en la zona B podría activar una sobrecarga en la zona antes Cloud Service Mesh es capaz de responder al cambio.
Cuando uses el algoritmo de rociar a la región, el tráfico de cada cliente siempre distribuida entre las zonas de backend en una región. Esto genera un tráfico entre zonas más alto de forma coherente, incluso cuando queda capacidad en la zona local, y puede generar un área afectada más grande para el tráfico de Cloud Service Mesh, si dos clientes de Cloud Service Mesh envían tráfico a las mismas zonas.
Distribuye el tráfico de tu cliente en todos los backends de varias regiones
Como se explicó en las secciones anteriores, el algoritmo de rociar a la región se extiende el tráfico desde cada cliente hacia todas las zonas de una región. En el caso de los servicios que tienen MIG o NEG en varias regiones, Cloud Service Mesh aún optimiza la latencia general enviando tráfico a la región más cercana.
Si prefieres un radio de propagación más grande, usa el algoritmo de spray a mundo. Con con este algoritmo, los clientes extienden sus solicitudes a todos los MIG o NEG del mundo en múltiples regiones.
Es importante tener en cuenta que, con este algoritmo, todo el tráfico se distribuye a todos los backend a nivel global. Una consulta defectuosa puede dañar todos los backends de tu de Google Cloud. El algoritmo también genera más tráfico entre regiones, lo que podría aumentar la latencia de las solicitudes y generar costos adicionales.
Minimiza el tráfico interzonal
Puedes optimizar la latencia general y reducir el tráfico entre zonas con el de cascada por zona. Cuando se configuran varios MIG o NEG en una zona, cliente se enruta al MIG o NEG más cercano de la zona, hasta su antes de enviar tráfico al siguiente MIG o NEG de la zona hasta que se use toda la capacidad de MIG o NEG de la zona. Solo entonces el tráfico se transfiere a la zona más cercana.
Con este algoritmo, puedes minimizar el tráfico innecesario entre zonas. La latencia general podría mejorar un poco porque se prefieren los backends locales más cercanos. Sin embargo, esto también podría crear un tráfico desigual entre los MIG o los NEG dentro de una región.
Comparación de los algoritmos de balanceo de cargas
En la siguiente tabla, se proporciona una comparación detallada de los cuatro algoritmos de balanceo de cargas de Cloud Service Mesh.
Comportamiento | Cascada por región | Difundir a la región | Difundir al mundo | Cascada por zona |
---|---|---|---|---|
Uso de capacidad uniforme dentro de una región en estado estable | Sí | Sí | Sí | No |
Uso de capacidad uniforme en varias regiones en estado estable | No | No | Sí | No |
División de tráfico uniforme dentro de una región en estado estable | No | Sí | Sí | No |
Tráfico entre zonas | Sí. Este algoritmo distribuirá el tráfico de manera uniforme entre las zonas en un región y, al mismo tiempo, optimiza la latencia de red. Si es necesario, el tráfico se puede enviar a varias zonas. | Sí | Sí | Sí, el tráfico llenará la zona más cercana hasta su capacidad máxima. Luego, irá a la siguiente zona. |
Sensibilidad a los aumentos repentinos de tráfico en la zona local | Promedio: Depende de la cantidad de tráfico que ya se haya redireccionado para equilibrar las zonas. | Menor; ya que los aumentos repentinos en una sola zona se extenderán en todas las zonas región. | Menor; ya que los aumentos repentinos de una sola zona se extenderán por todas las regiones. | Más alta, ya que es más probable que los aumentos repentinos de zona se entreguen por completo a través de una sola zona hasta que Cloud Service Mesh pueda reaccionar. |
Opciones adicionales avanzadas de balanceo de cargas
En las siguientes secciones, se analizan las opciones para modificar la carga de la malla de servicios de Cloud el balanceo de cargas.
Backends preferidos
Puedes configurar el balanceo de cargas para que un grupo de backends de un servicio de backend se designe como preferido. Estos backends se usan completamente antes que las solicitudes posteriores se enrutan a los backends restantes. Cloud Service Mesh distribuye el tráfico de clientes primero a los backends preferidos, lo que minimiza las latencias de solicitudes para tus clientes.
Cualquier tráfico que exceda la capacidad configurada de los backends preferidos enrutan a backends no preferidos. El algoritmo de balanceo de cargas distribuye el tráfico entre los backends no preferidos.
Un caso de uso es el desbordamiento a Google Cloud, en el que especificas recursos de procesamiento local, representados por un NEG de conectividad híbrida, para que se usen por completo antes de que las solicitudes se enruten a MIG o NEG de backend de Google Cloud con escalamiento automático. Esta configuración puede minimizar el consumo de procesamiento de Google Cloud y, al mismo tiempo, tener la capacidad de transferir gradualmente o conmutarse por error a Google Cloud cuando sea necesario.
Vaciado automático de la capacidad
Cuando un backend no está en buen estado, suele ser conveniente excluirlo lo más rápido posible de las decisiones de balanceo de cargas. Excluir el backend evita que se hagan solicitudes se envíen al backend en mal estado. Además, el tráfico se equilibra entre los backends en buen estado para evitar la sobrecarga del backend y optimizar la latencia general.
Esta opción es similar a establecer la capacityscalar a cero. Le pide a Cloud Service Mesh que reduzca automáticamente la escala de la capacidad del backend a cero. Cuando un backend tiene menos del 25% de sus extremos o instancias individuales y aprueba las verificaciones de estado. Con esta opción, los backends en mal estado se quitan de el balanceo de cargas global.
Cuando los backends desviados automáticamente vuelven a estar en buen estado, se desvían si al menos el 35% de los extremos o instancias están en buen estado durante 60 segundos. Malla de servicios en la nube no agota más del 50% de los extremos en un servicio de backend, independientemente del estado del backend.
Un caso de uso es que puedes usar el desvío de capacidad automática con backends preferidos. Si se prefiere un MIG o NEG de backend y muchos de los extremos que contiene están en mal estado, este parámetro de configuración protege los extremos restantes en el MIG o NEG desviando el tráfico de ellos.
Personaliza el comportamiento de la conmutación por error
Por lo general, Cloud Service Mesh envía tráfico a los backends tomando varios factores tener en cuenta. En un estado estable, Cloud Service Mesh envía tráfico a los backends que se eligen en función de los algoritmos analizados anteriormente. Los backends seleccionados se consideran óptimos en términos de latencia y uso de la capacidad. Se llaman backends principales.
Cloud Service Mesh también realiza un seguimiento de los backends que se usan cuando los backends principales están en mal estado y no pueden recibir tráfico. Estos backends se llaman backends de conmutación por error. Por lo general, son backends cercanos que tienen cierta capacidad restantes.
Cuando un backend no está en buen estado, Cloud Service Mesh intenta evitar enviarle tráfico y, en su lugar, lo redirecciona a backends en buen estado.
El recurso serviceLbPolicy
incluye un campo, failoverHealthThreshold
, cuyo
se puede personalizar para controlar el comportamiento de conmutación por error. El valor del umbral que establezcas determina cuándo se cambia el tráfico de los backends principales a los backends de conmutación por error.
Cuando algunos extremos del backend principal están en mal estado, Cloud Service Mesh no cambia el tráfico de inmediato. En cambio, Cloud Service Mesh trasladar el tráfico a extremos en buen estado en el backend principal para intentar estabilizar tráfico.
Si demasiados extremos del backend están en mal estado, los extremos restantes no pueden manejar el tráfico adicional. En este caso, el umbral de fallas es que se usa para decidir si la conmutación por error debe activarse o no. Cloud Service Mesh tolera el estado no saludable hasta el umbral y, luego, cambia una parte del tráfico de los backends principales a los backends de conmutación por error.
El umbral de estado de conmutación por error es un valor porcentual. El valor que establezcas determina cuándo Cloud Service Mesh dirige el tráfico a los backends de conmutación por error. Tú Puedes establecer el valor en un número entero entre 1 y 99. El valor predeterminado de Cloud Service Mesh es 70 con Envoy y 50 para gRPC sin proxy. Un valor más alto inicia la conmutación por error de tráfico antes que un valor más bajo.
Soluciona problemas
Los patrones de distribución de tráfico pueden cambiar en función de cómo configures el nuevo
serviceLbPolicy
por el servicio de backend
Para depurar problemas de tráfico, usa los sistemas de supervisión existentes para examinar cómo los flujos de tráfico a los backends. Métricas de red y de la malla de servicios de Cloud adicionales puede ayudarte a comprender cómo se toman las decisiones de balanceo de cargas. Esta sección ofrece sugerencias generales de solución de problemas y mitigación.
En general, Cloud Service Mesh intenta asignar tráfico para mantener los backends en funcionamiento con su capacidad configurada. Ten en cuenta que no hay garantía de que se pueda satisfacer la solicitud. Puedes revisar la documentación del servicio de backend para obtener más detalles.
Luego, el tráfico se asigna según el algoritmo que uses. Por ejemplo, con el algoritmo de WATERFALL_BY_ZONE, Cloud Service Mesh intenta mantener el tráfico en la zona más cercana. Si revisas las métricas de red, verás Cloud Service Mesh prefiere un backend con la menor latencia de RTT cuando envía solicitudes a optimizar la latencia general de RTT.
En las siguientes secciones, se describen los problemas que podrías observar con la carga de servicios de balanceo de cargas y la configuración de backend preferida.
El tráfico se envía a MIG o NEG más distantes antes que a los más cercanos
Este es el comportamiento previsto cuando los backends preferidos se configuran con más MIG o NEG distantes. Si no deseas este comportamiento, cambia los valores en el backends preferidos.
El tráfico no se envía a los MIG o NEG que tienen muchos extremos inactivos
Este es el comportamiento previsto cuando se desvían los MIG o NEG porque un
Se configuró autoCapacityDrain
. Con este parámetro de configuración, se quitarán de las decisiones de balanceo de cargas los MIG o NEG con muchos extremos en mal estado, por lo que se evitarán. Si este comportamiento no es el deseado, puedes inhabilitar el autoCapacityDrain
del lugar. Sin embargo, ten en cuenta que esto significa que el tráfico se puede enviar a MIG o NEG con muchos extremos en mal estado y, por lo tanto, las solicitudes pueden fallar con errores.
No se envía tráfico a algunos MIG o NEG cuando se prefieren algunos MIG o NEG
Este es el comportamiento deseado si los MIG o NEG configurados como preferidos aún no alcanzaron la capacidad.
Cuando se configuran los backends preferidos y estos no han alcanzado su capacidad límite, el tráfico no se enviará a otros MIG o NEG. Los MIG preferidos o Los NEG se asignarán primero en función de la latencia del RTT a estos backends.
Si prefieres que el tráfico se envíe a otro lugar, puedes configurar su servicio de backend sin backends preferidos o con estimaciones de capacidad más conservadoras para los MIG o NEG preferidos.
El tráfico se envía a demasiados MIG o NEG distintos de una sola fuente
Este es el comportamiento previsto si se usa de "rociar a la región" o de "rociar al mundo". Sin embargo, es posible que tengas problemas con la distribución más amplia de tus tráfico. Por ejemplo, las tasas de hits de caché podrían reducirse a medida que los backends ven tráfico de una selección más amplia de clientes. En este caso, considera usar otros algoritmos, como la cascada por región.
Se envía el tráfico a un clúster remoto cuando cambia el estado del backend
Cuando failoverHealthThreshold
se establece en un valor alto, este es el valor deseado
de tu modelo. Si deseas que el tráfico permanezca en los backends principales cuando haya cambios de estado transitorios, establece failoverHealthThreshold
en un valor más bajo.
Los extremos en buen estado están sobrecargados cuando algunos extremos no están en buen estado
Cuando failoverHealthThreshold
se establece en un valor bajo, este es el
de tu modelo. Cuando algunos extremos están en mal estado, el tráfico de estos extremos puede distribuirse entre los extremos restantes en el mismo MIG o NEG. Si deseas que el comportamiento de la conmutación por error se active antes, establece failoverHealthThreshold
en un valor más alto.
Limitaciones y consideraciones
Aquí encontrarás limitaciones y consideraciones que debes tener en cuenta. cuando configuras el balanceo de cargas avanzado.
Cascada por zona
Durante los eventos de mantenimiento transparentes, es posible balanceado temporalmente fuera de la zona local.
Hay casos en los que algunos MIG o NEG están al límite de su capacidad, mientras que otros MIG o Los NEG en la misma región tienen poco uso.
Si el origen de tráfico del servicio se encuentra en la misma zona que su verás una reducción en el tráfico entre zonas.
Una zona puede asignarse a diferentes clústeres de hardware físico interno en los centros de datos de Google por ejemplo, debido a la virtualización de zonas. En este caso, es posible que las VMs en la misma zona no se carguen de manera uniforme. En general, se optimizará la latencia general.
Spray para aplicar a la región
Si los extremos en un MIG o NEG fallan, las consecuencias suelen ser distribuida entre un conjunto más grande de clientes; en otras palabras, un número mayor de los clientes en malla podrían verse afectados, pero de forma menos grave.
Como los clientes envían solicitudes a todos los MIG o NEG de la región, en algunos casos, esto podría aumentar la cantidad de tráfico entre zonas.
La cantidad de conexiones abiertas a los endpoints puede aumentar, lo que el aumento en el uso de los recursos.
Backends preferidos
Los MIG o NEG configurados como backends preferidos pueden estar lejos del clientes potenciales y causar una mayor latencia promedio. Esto puede ocurrir incluso si hay otros MIG o NEG que podrían entregar los clientes con una latencia más baja.
Algoritmos de balanceo de cargas global (cascada por región, rociador a región, cascada por zona) no se apliquen a los MIG o NEG configurados como preferidos backends.
Desvío de capacidad automático
La cantidad mínima de MIG que nunca se desvían es diferente del de salida que se establece cuando se configura con
serviceLbPolicies
.De forma predeterminada, la cantidad mínima de MIG que nunca se desvían es 1.
Si se establece
serviceLbPolicies
, el porcentaje mínimo de MIG o NEG que nunca se agota es del 50%. En ambas configuraciones, un MIG o NEG se marca como no operativo si menos del 25% de las instancias o los extremos del MIG o NEG están en buen estado.Para que un MIG o NEG se desagote después de un drenaje, al menos el 35% de las instancias o los extremos deben estar en buen estado. Esto es necesario para garantizar que un MIG o el NEG no vacila entre los estados de drenaje y sin drenar.
Las mismas restricciones para el escalador de capacidad de los backends que no usan un el modo de balanceo también se aplican aquí.
¿Qué sigue?
- Para obtener instrucciones de configuración, consulta Configura el balanceo de cargas avanzado.