Entrena ShapeMask en Cloud TPU

En este documento se muestra cómo ejecutar el modelo ShapeMask mediante Cloud TPU con el conjunto de datos COCO.

En las siguientes instrucciones, se supone que ya estás familiarizado con la ejecución de un modelo en Cloud TPU. Si eres nuevo en Cloud TPU, puedes consultar la guía de inicio rápido para obtener una introducción básica.

Si planeas entrenar en una porción de pod de TPU, revisa la página sobre el entrenamiento en pods de TPU para comprender los cambios de parámetros necesarios cuando trabajas con porciones de pod.

Objetivos

  • Crear un bucket de Cloud Storage para almacenar el resultado de tu modelo y tu conjunto de datos
  • Preparar el conjunto de datos de COCO
  • Configurar una VM de Compute Engine y un nodo de Cloud TPU para entrenamiento y evaluación
  • Ejecutar el entrenamiento y la evaluación en un solo Cloud TPU o un pod de Cloud TPU

Costos

En este instructivo, se usan componentes facturables de Google Cloud, que incluyen los siguientes:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Usa la calculadora de precios para generar una estimación de los costos según el uso previsto. Los usuarios nuevos de Google Cloud pueden ser elegibles para obtener una prueba gratuita.

Antes de comenzar

Antes de comenzar este instructivo, verifica que tu proyecto de Google Cloud esté configurado correctamente.

  1. Accede a tu cuenta de Google Cloud. Si eres nuevo en Google Cloud, crea una cuenta para evaluar el rendimiento de nuestros productos en situaciones reales. Los clientes nuevos también obtienen $300 en créditos gratuitos para ejecutar, probar y, además, implementar cargas de trabajo.
  2. En la página del selector de proyectos de Google Cloud Console, selecciona o crea un proyecto de Google Cloud.

    Ir al selector de proyecto

  3. Comprueba que la facturación esté habilitada en tu proyecto.

    Descubre cómo puedes habilitar la facturación

  4. En esta explicación, se usan componentes facturables de Google Cloud. Consulta la página de precios de Cloud TPU para calcular los costos. Asegúrate de limpiar los recursos que crees cuando hayas terminado de usarlos para evitar cargos innecesarios.

Si planeas entrenar en una porción de pod de TPU, consulta la sección Entrenar en pods de TPU para comprender los cambios de parámetros necesarios cuando trabajas con porciones de pod.

Configura tus recursos

En esta sección, se proporciona información sobre cómo configurar los recursos de Cloud Storage, VM y Cloud TPU para este instructivo.

  1. Abre una ventana de Cloud Shell.

    Abrir Cloud Shell

  2. Crea una variable para el ID de tu proyecto.

    export PROJECT_ID=project-id
    
  3. Configura la herramienta de línea de comandos gcloud para usar el proyecto en el que deseas crear Cloud TPU.

    gcloud config set project ${PROJECT_ID}
    

    La primera vez que ejecutes este comando en una VM de Cloud Shell nueva, se mostrará la página Authorize Cloud Shell. Haz clic en Authorize en la parte inferior de la página para permitir que gcloud realice llamadas a la API de GCP con tus credenciales.

  4. Crea una cuenta de servicio para el proyecto de Cloud TPU.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    El comando muestra una cuenta de servicio de Cloud TPU con el siguiente formato:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Crea un bucket de Cloud Storage con el siguiente comando:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 -b on gs://bucket-name
    

    Este bucket de Cloud Storage almacena los datos que usas para entrenar tu modelo y los resultados del entrenamiento. La herramienta gcloud compute tpus execution-groups que se usa en este instructivo configura los permisos predeterminados para la cuenta de servicio de Cloud TPU. Si quieres contar con permisos más detallados, revisa los permisos de nivel de acceso.

    La ubicación del bucket debe estar en la misma región que tu máquina virtual (VM) y tu nodo TPU. Las VM y los nodos TPU se encuentran en zonas específicas, que son subdivisiones dentro de una región.

  6. Inicia una instancia de VM de Compute Engine.

    $ gcloud compute tpus execution-groups create --vm-only \
     --name=shapemask-tutorial \
     --zone=us-central1-a \
     --disk-size=300 \
     --machine-type=n1-standard-16 \
     --tf-version=1.15.5
    

    Descripciones de las marcas de comandos

    vm-only
    Crea solo una VM. De forma predeterminada, el comando gcloud compute tpus execution-groups crea una VM y una Cloud TPU.
    name
    El nombre de la Cloud TPU para crear.
    zone
    Es la zona en la que deseas crear la Cloud TPU.
    disk-size
    El tamaño del disco duro en GB de la VM creada con el comando gcloud compute tpus execution-groups.
    machine-type
    El tipo de máquina de la VM de Compute Engine que se creará.
    tf-version
    La versión de Tensorflow ctpu se instala en la VM.
  7. Aparece la configuración que especificaste. Ingresa y para aprobar o n para cancelar.

    Cuando el comando gcloud compute tpus execution-groups termine de ejecutarse, verifica que el indicador de shell haya cambiado de username@projectname a username@vm-name. Este cambio indica que accediste a tu VM de Compute Engine.

    gcloud compute ssh shapemask-tutorial --zone=us-central1-a
    

    Mientras sigues estas instrucciones, ejecuta cada comando que comience con (vm)$ en tu instancia de Compute Engine.

  8. Crea una variable de entorno para almacenar la ubicación de tu bucket de Cloud Storage.

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
  9. Crea una variable de entorno para el directorio de datos.

    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
    
  10. Clona el repositorio tpu.

    (vm)$ git clone -b shapemask https://github.com/tensorflow/tpu/
    
  11. Instala los paquetes necesarios para procesar los datos con anterioridad.

    (vm)$ sudo apt-get install -y python3-tk && \
      pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow && \
      pip3 install --user "git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI"
    

Prepara el conjunto de datos COCO

  1. Ejecuta la secuencia de comandos download_and_preprocess_coco.sh para convertir el conjunto de datos COCO en un conjunto de TFRecords (*.tfrecord), que son compatibles con la aplicación de entrenamiento.

    (vm)$ sudo bash /usr/share/tpu/tools/datasets/download_and_preprocess_coco.sh ./data/dir/coco
    

    Esto instala las bibliotecas necesarias y ejecuta la secuencia de comandos de procesamiento previo. Como resultado, se muestra una serie de archivos *.tfrecord en tu directorio de datos local.

  2. Después de convertir los datos en TFRecords, cópialos desde el almacenamiento local a tu depósito de Cloud Storage con el comando gsutil. También debes copiar los archivos de anotaciones. Estos archivos ayudan a validar el rendimiento del modelo.

    (vm)$ gsutil -m cp ./data/dir/coco/*.tfrecord ${DATA_DIR}
    (vm)$ gsutil cp ./data/dir/coco/raw-data/annotations/*.json ${DATA_DIR}
    

Configurar y ejecutar Cloud TPU

  1. Inicia un recurso de Cloud TPU con el comando gcloud.

    (vm)$ gcloud compute tpus execution-groups create \
     --tpu-only \
     --accelerator-type=v3-8  \
     --name=shapemask-tutorial \
     --zone=us-central1-a \
     --tf-version=1.15.5
    

    Descripciones de las marcas de comandos

    tpu-only
    Crea la Cloud TPU sin crear una VM. De forma predeterminada, el comando gcloud compute tpus execution-groups crea una VM y una Cloud TPU.
    accelerator-type
    El tipo de Cloud TPU que se creará.
    name
    El nombre de la Cloud TPU para crear.
    zone
    Es la zona en la que deseas crear la Cloud TPU.
    tf-version
    La versión de Tensorflow ctpu se instala en la VM.
  2. Aparece la configuración que especificaste. Ingresa y para aprobar o n para cancelar.

    Verás el siguiente mensaje: Operation success; not ssh-ing to Compute Engine VM due to --tpu-only flag. Como ya completaste la propagación de Llaves SSH, puedes ignorar este mensaje.

  3. Agrega una variable de entorno al nombre de tu Cloud TPU.

    (vm)$ export TPU_NAME=shapemask-tutorial
    

Ejecuta la secuencia de comandos de entrenamiento y evaluación

  1. Crea las variables de entorno siguientes:

    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/shapemask_exp
    (vm)$ export RESNET_CHECKPOINT=gs://cloud-tpu-checkpoints/shapemask/retinanet/resnet101-checkpoint-2018-02-24
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    (vm)$ export SHAPE_PRIOR_PATH=gs://cloud-tpu-checkpoints/shapemask/kmeans_class_priors_91x20x32x32.npy
    (vm)$ export PYTHONPATH=${PYTHONPATH}:$HOME/tpu/models
    
  2. Ejecuta la siguiente secuencia de comandos para realizar el entrenamiento.

    (vm)$ python3 ~/tpu/models/official/detection/main.py \
    --model=shapemask \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --num_cores=8 \
    --model_dir=${MODEL_DIR} \
    --mode="train" \
    --eval_after_training=False \
    --params_override="{train: {iterations_per_loop: 1000, train_batch_size: 64, total_steps: 1000, learning_rate: {total_steps: 1000, warmup_learning_rate: 0.0067, warmup_steps: 500, init_learning_rate: 0.08, learning_rate_levels: [0.008, 0.0008], learning_rate_steps: [30000, 40000]}, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet101/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, resnet: {resnet_depth: 101}, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 }, shapemask_head: {use_category_for_mask: true, shape_prior_path: ${SHAPE_PRIOR_PATH}}, shapemask_parser: {output_size: [1024, 1024]}, }"
    

    Descripciones de las marcas de comandos

    model
    El modelo que se entrenará.
    use_tpu
    Establece el valor como true para entrenar en una Cloud TPU.
    tpu_name
    El nombre de la Cloud TPU que se usará para el entrenamiento.
    num_cores
    La cantidad de núcleos de Cloud TPU que se usarán durante el entrenamiento.
    model_dir
    El depósito de Cloud Storage en el que se almacenan los puntos de control y los resúmenes durante el entrenamiento. Puedes usar una carpeta existente para cargar los puntos de control generados con anterioridad en una TPU del mismo tamaño y versión de TensorFlow.
    mode
    Una de train, eval, or train_and_eval.
    eval_after_training
    Establece el valor true para evaluar el modelo después del entrenamiento.
    params_override
    Una string JSON que anula los parámetros de secuencia de comandos predeterminados. Para obtener más información sobre los parámetros de secuencia de comandos, consulta /usr/share/models/official/vision/detection/main.py.

En este punto, puedes finalizar este instructivo y limpiar tus recursos de GCP o puedes explorar con más detalle cómo ejecutar el modelo en los pods de Cloud TPU.

Escala tu modelo con pods de Cloud TPU

Puedes obtener resultados más rápidos si escalas tu modelo con pods de Cloud TPU. El modelo Mask RCNN totalmente compatible puede funcionar con las siguientes porciones de pod:

  • v2-32
  • v3-32

Cuando trabajes con pods de Cloud TPU, primero entrena el modelo con un pod y, luego, usa un solo dispositivo Cloud TPU para evaluar el modelo.

Entrena con pods de Cloud TPU

Si ya borraste tu instancia de Compute Engine, crea una nueva y sigue los pasos de Configura tus recursos.

  1. Borra el recurso de Cloud TPU que creaste a fin de entrenar el modelo en un solo dispositivo.

    (vm)$ gcloud compute tpus execution-groups delete shapemask-tutorial \
      --zone=us-central1-a \
      --tpu-only
  2. Ve a tu depósito de Cloud Storage y borra el archivo checkpoint.

  3. Ejecuta el comando gcloud compute tpus execution-groups, con el parámetro accelerator-type para especificar el segmento pod que desea usar. Por ejemplo, el siguiente comando usa una porción de pod v3-32.

    (vm)$ gcloud compute tpus execution-groups  create --name=shapemask-tutorial \
      --accelerator-type=v2-32  \
      --zone=us-central1-a \
      --tf-version=1.15.5 \
      --tpu-only
    

    Descripciones de las marcas de comandos

    name
    El nombre de la Cloud TPU para crear.
    accelerator-type
    El tipo de Cloud TPU que se creará.
    zone
    Es la zona en la que deseas crear la Cloud TPU.
    tf-version
    La versión de Tensorflow gcloud se instala en la VM.
    tpu-only
    Crea una Cloud TPU sola. De forma predeterminada, el comando gcloud crea una VM y una Cloud TPU.
  4. Ejecuta la siguiente secuencia de comandos para entrenar el modelo en un pod.

    Con la línea de comandos determinada, la secuencia de comandos de entrenamiento tarda alrededor de 45 minutos en ejecutarse. Para ejecutar la convergencia, establece total_steps en 22,000.

    (vm)$ python3 ~/tpu/models/official/detection/main.py \
    --model shapemask \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --num_cores=32 \
    --model_dir=${MODEL_DIR} \
    --mode="train" \
    --eval_after_training=False \
    --params_override="{train: {iterations_per_loop: 1000, train_batch_size: 256, total_steps: 1000, learning_rate: {total_steps: 1000, warmup_learning_rate: 0.0067, warmup_steps: 500, init_learning_rate: 0.08, learning_rate_levels: [0.008, 0.0008], learning_rate_steps: [15000, 20000]}, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet101/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, resnet: {resnet_depth: 101}, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 }, shapemask_head: {use_category_for_mask: true, shape_prior_path: ${SHAPE_PRIOR_PATH}}, shapemask_parser: {output_size: [1024, 1024]}, }"
    

    Descripciones de las marcas de comandos

    strategy_type
    Para entrenar el modelo RetinaNet en una TPU, debes configurar distribution_strategy en tpu.
    tpu
    El nombre de Cloud TPU. Se configura con la variable de entorno TPU_NAME.
    model_dir
    El depósito de Cloud Storage en el que se almacenan los puntos de control y los resúmenes durante el entrenamiento. Puedes usar una carpeta existente para cargar los puntos de control generados con anterioridad en una TPU del mismo tamaño y versión de TensorFlow.
    mode
    Una de train, eval, o train_and_eval.
    model
    El modelo que se entrenará.
    eval_after_training
    Establece el valor true para evaluar el modelo después del entrenamiento.
    params_override
    Una string JSON que anula los parámetros de secuencia de comandos predeterminados. Para obtener más información sobre los parámetros de secuencia de comandos, consulta /usr/share/models/official/vision/detection/main.py.
  5. El modelo debe evaluarse en un solo dispositivo de Cloud TPU. Borra el dispositivo del pod de Cloud TPU.

    $ gcloud compute tpus execution-groups delete shapemask-tutorial \
      --zone=us-central1-a
    
  6. Crea un recurso de Cloud TPU único.

    (vm)$ gcloud compute tpus execution-groups create \
     --tpu-only \
     --accelerator-type=v3-8  \
     --name=shapemask-tutorial \
     --zone=us-central1-a \
     --tf-version=1.15.5
    

    Descripciones de las marcas de comandos

    tpu-only
    Crea la Cloud TPU sin crear una VM. De forma predeterminada, el comando gcloud compute tpus execution-groups crea una VM y una Cloud TPU.
    tpu-size
    El tipo de Cloud TPU que se creará.
    name
    El nombre de la Cloud TPU para crear.
    zone
    Es la zona en la que deseas crear la Cloud TPU.
    tf-version
    La versión de Tensorflow ctpu se instala en la VM.
  7. Ejecuta la secuencia de comandos para realizar la evaluación.

    (vm)$ python3 ~/tpu/models/official/detection/main.py \
    --model shapemask \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --num_cores=8 \
    --model_dir=${MODEL_DIR} \
    --mode="eval" \
    --eval_after_training=False \
    --params_override="{train: {iterations_per_loop: 1000, train_batch_size: 256, total_steps: 1000, learning_rate: {total_steps: 1000, warmup_learning_rate: 0.0067, warmup_steps: 500, init_learning_rate: 0.08, learning_rate_levels: [0.008, 0.0008], learning_rate_steps: [15000,20000]}, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet101/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, resnet: {resnet_depth: 101}, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 }, shapemask_head: {use_category_for_mask: true, shape_prior_path: ${SHAPE_PRIOR_PATH}}, shapemask_parser: {output_size: [1024, 1024]}, }"

    Descripciones de las marcas de comandos

    model
    El modelo que se entrenará.
    use_tpu
    Establece el valor como true para entrenar en una Cloud TPU.
    tpu
    El nombre de Cloud TPU. Se configura con la variable de entorno TPU_NAME.
    num_cores
    La cantidad de núcleos de Cloud TPU que se usarán durante el entrenamiento.
    model_dir
    El depósito de Cloud Storage en el que se almacenan los puntos de control y los resúmenes durante el entrenamiento. Puedes usar una carpeta existente para cargar los puntos de control generados con anterioridad en una TPU del mismo tamaño y versión de TensorFlow.
    mode
    Una de train, eval, or train_and_eval.
    eval_after_training
    Establece el valor true para evaluar el modelo después del entrenamiento.
    params_override
    Una string JSON que anula los parámetros de secuencia de comandos predeterminados. Para obtener más información sobre los parámetros de secuencia de comandos, consulta /usr/share/models/official/vision/detection/main.py.

    El resultado de la secuencia de comandos de evaluación se ve de la siguiente manera:

    Eval result: {
     'AP75': 0.116238795,
     'AP': 0.121657856,
     'mask_ARmax100': 0.29928473,
     'APl': 0.17029367,
     'mask_ARmax1': 0.17677748,
     'ARs': 0.14137766,
     'mask_AP': 0.12017078,
     'ARmax10': 0.29230836,
     'mask_AP50': 0.20920053,
     'ARm': 0.34366703,
     'AP50': 0.22949784,
     'mask_ARl': 0.41743836,
     'mask_ARs': 0.12669834,
     'APs': 0.046222884,
     'mask_APs': 0.041104294,
     'mask_APl': 0.17535995,
     'mask_ARm': 0.34216145,
     'mask_ARmax10': 0.28690106,
     'APm': 0.14354791,
     'ARmax100': 0.3058479,
     'ARmax1': 0.17576972,
     'ARl': 0.41305476,
     'mask_APm': 0.1422335,
     'mask_AP75': 0.12010279
    }
    

Realice una limpieza

Para evitar que se apliquen cargos a tu cuenta de Google Cloud por los recursos usados en este instructivo, borra el proyecto que contiene los recursos o conserva el proyecto y borra los recursos individuales.

  1. Desconéctate de la instancia de Compute Engine.

    (vm)$ exit
    

    El mensaje ahora debería mostrar username@projectname, que indica que estás en Cloud Shell.

  2. En Cloud Shell, usa el siguiente comando para borrar tu VM de Compute Engine y Cloud TPU:

    $ gcloud compute tpus execution-groups delete shapemask-tutorial \
      --zone=us-central1-a
    
  3. Verifica que se hayan borrado los recursos con la ejecución de gcloud compute tpus execution-groups list. La eliminación puede tomar varios minutos. Una respuesta como la que se muestra a continuación indica que tus instancias se borraron de forma correcta.

    $ gcloud compute tpus execution-groups list \
     --zone=us-central1-a
    

    Deberías ver una lista vacía de TPU como la siguiente:

       NAME             STATUS
    
  4. Borra el depósito de Cloud Storage con gsutil como se muestra a continuación. Reemplaza bucket-name por el nombre del depósito de Cloud Storage.

    $ gsutil rm -r gs://bucket-name
    

¿Qué sigue?

En este instructivo, entrenaste el modelo ShapeMask mediante un conjunto de datos de muestra. Los resultados de esta capacitación (en la mayoría de los casos) no se pueden usar para la inferencia. Para usar un modelo de inferencia, puedes entrenar los datos en un conjunto de datos disponible públicamente o en tu propio conjunto de datos. Los modelos entrenados en Cloud TPU requieren que los conjuntos de datos tengan el formato TFRecord.

Puedes usar la muestra de la herramienta de conversión de conjuntos de datos para convertir un conjunto de datos de clasificación de imágenes en formato TFRecord. Si no usas un modelo de clasificación de imágenes, deberás convertir tú mismo el conjunto de datos en formato TFRecord. Para obtener más información, consulta TFRecord y tf.Example.

Ajuste de hiperparámetros

Para mejorar el rendimiento del modelo con tu conjunto de datos, puedes ajustar los hiperparámetros del modelo. Puedes encontrar información sobre hiperparámetros comunes para todos los modelos compatibles con TPU en GitHub. La información sobre los hiperparámetros específicos del modelo se puede encontrar en el código fuente para cada modelo. Para obtener más información sobre el ajuste de hiperparámetros, consulta Descripción general del ajuste de hiperparámetros, Usa el servicio de ajuste de hiperparámetros y Ajusta los hiperparámetros.

Inferencia

Una vez que entrenaste tu modelo, puedes usarlo para la inferencia (también llamada predicción). AI Platform es una solución basada en la nube que sirve para desarrollar, entrenar e implementar modelos de aprendizaje automático. Una vez que se implementa un modelo, puedes usar el servicio de AI Platform Prediction.

Entrena con diferentes tamaños de imagen

Puedes intentar usar una red neuronal más grande (por ejemplo, ResNet-101 en lugar de ResNet-50). Una imagen de entrada más grande y una red neuronal más potente producirán un modelo más lento, pero más preciso.

Usa una base diferente

Como alternativa, puedes explorar el modelo de ResNet previo al entrenamiento en tu propio conjunto de datos y usarlo como base para tu modelo ShapeMask. Con algo más de trabajo, también puedes intercambiar ResNet por una red troncal alternativa. Por último, si estás interesado en implementar tus propios modelos de detección de objetos, esta red puede ser una buena base para experimentar más.