Transcribe audio telefónico con modelos mejorados

En este instructivo, se explica cómo transcribir el audio grabado de un teléfono con Speech-to-Text.

Los archivos de audio pueden provenir de muchas fuentes diferentes. Los datos de audio pueden provenir de un teléfono (como el buzón de voz) o de una banda sonora incluida en un archivo de video.

En Speech-to-Text, puedes usar uno de varios modelos de aprendizaje automático para transcribir tu archivo de audio a fin de que coincida mejor con la fuente original del audio. Para obtener mejores resultados en tu transcripción de voz, especifica la fuente del audio original. Esto permite que se procesen tus archivos de audio en Speech-to-Text con un modelo de aprendizaje automático entrenado para datos similares a tu archivo de audio.

Objetivos

  • Envía una solicitud de transcripción de audio para el audio grabado desde un teléfono (como el buzón de voz) a Speech-to-Text.
  • Especifica un modelo de reconocimiento de voz mejorado para una solicitud de transcripción de audio.

Costos

En este instructivo, se usa el siguiente componente facturable de Cloud Platform:

  • Speech-to-Text

Usa la calculadora de precios para generar una estimación de los costos según el uso previsto. Los usuarios nuevos de Cloud Platform podrían cumplir con los requisitos para obtener una prueba gratuita.

Antes de comenzar

Este instructivo tiene varios requisitos previos:

Envía una solicitud:

Para transcribir mejor el audio capturado en un teléfono, como una llamada telefónica o un mensaje de voz, puedes configurar el campo model en tu carga útil RecognitionConfig como phone_call. En el campo model, se indica a la API de Speech-to-Text qué modelo de reconocimiento de voz usar para la solicitud de transcripción.

Para mejorar los resultados de la transcripción de audio telefónico, usa un modelo mejorado. Para usar un modelo mejorado, debes configurar el campo useEnhanced como true en tu carga útil RecognitionConfig.

En las siguientes muestras de código, se explica cómo seleccionar un modelo de transcripción específico cuando se llama a Speech-to-Text.

Protocolo

Consulta el extremo de la API de speech:recognize para obtener todos los detalles.

Para realizar un reconocimiento de voz síncrono, haz una solicitud POST y proporciona el cuerpo de la solicitud apropiado. A continuación, se muestra un ejemplo de una solicitud POST con curl. En el ejemplo, se usa el token de acceso correspondiente a la configuración de una cuenta de servicio para el proyecto con Google Cloud CLI. Si deseas obtener instrucciones para instalar la gcloud CLI, configurar un proyecto con una cuenta de servicio y conseguir un token de acceso, consulta la guía de inicio rápido.

curl -s -H "Content-Type: application/json" \
    -H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
    https://speech.googleapis.com/v1/speech:recognize \
    --data '{
    "config": {
        "encoding": "LINEAR16",
        "languageCode": "en-US",
        "enableWordTimeOffsets": false,
        "enableAutomaticPunctuation": true,
        "model": "phone_call",
        "useEnhanced": true
    },
    "audio": {
        "uri": "gs://cloud-samples-tests/speech/commercial_mono.wav"
    }
}'

Consulta la documentación de referencia de RecognitionConfig para obtener más información sobre la configuración del cuerpo de la solicitud.

Si la solicitud se realiza correctamente, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON:

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "Hi, I'd like to buy a Chromecast. I was wondering whether you could help me with that.",
          "confidence": 0.8930228
        }
      ],
      "resultEndTime": "5.640s"
    },
    {
      "alternatives": [
        {
          "transcript": " Certainly, which color would you like? We are blue black and red.",
          "confidence": 0.9101991
        }
      ],
      "resultEndTime": "10.220s"
    },
    {
      "alternatives": [
        {
          "transcript": " Let's go with the black one.",
          "confidence": 0.8818244
        }
      ],
      "resultEndTime": "13.870s"
    },
    {
      "alternatives": [
        {
          "transcript": " Would you like the new Chromecast Ultra model or the regular Chromecast?",
          "confidence": 0.94733626
        }
      ],
      "resultEndTime": "18.460s"
    },
    {
      "alternatives": [
        {
          "transcript": " Regular Chromecast is fine. Thank you. Okay. Sure. Would you like to ship it regular or Express?",
          "confidence": 0.9519095
        }
      ],
      "resultEndTime": "25.930s"
    },
    {
      "alternatives": [
        {
          "transcript": " Express, please.",
          "confidence": 0.9101229
        }
      ],
      "resultEndTime": "28.260s"
    },
    {
      "alternatives": [
        {
          "transcript": " Terrific. It's on the way. Thank you. Thank you very much. Bye.",
          "confidence": 0.9321616
        }
      ],
      "resultEndTime": "34.150s"
    }
 ]
}

Go


func enhancedModel(w io.Writer, path string) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	// path = "../testdata/commercial_mono.wav"
	data, err := ioutil.ReadFile(path)
	if err != nil {
		return fmt.Errorf("ReadFile: %v", err)
	}

	resp, err := client.Recognize(ctx, &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 8000,
			LanguageCode:    "en-US",
			UseEnhanced:     true,
			// A model must be specified to use enhanced model.
			Model: "phone_call",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Content{Content: data},
		},
	})
	if err != nil {
		return fmt.Errorf("Recognize: %v", err)
	}

	for i, result := range resp.Results {
		fmt.Fprintf(w, "%s\n", strings.Repeat("-", 20))
		fmt.Fprintf(w, "Result %d\n", i+1)
		for j, alternative := range result.Alternatives {
			fmt.Fprintf(w, "Alternative %d: %s\n", j+1, alternative.Transcript)
		}
	}
	return nil
}

Java

/**
 * Transcribe the given audio file using an enhanced model.
 *
 * @param fileName the path to an audio file.
 */
public static void transcribeFileWithEnhancedModel(String fileName) throws Exception {
  Path path = Paths.get(fileName);
  byte[] content = Files.readAllBytes(path);

  try (SpeechClient speechClient = SpeechClient.create()) {
    // Get the contents of the local audio file
    RecognitionAudio recognitionAudio =
        RecognitionAudio.newBuilder().setContent(ByteString.copyFrom(content)).build();

    // Configure request to enable enhanced models
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            .setSampleRateHertz(8000)
            .setUseEnhanced(true)
            // A model must be specified to use enhanced model.
            .setModel("phone_call")
            .build();

    // Perform the transcription request
    RecognizeResponse recognizeResponse = speechClient.recognize(config, recognitionAudio);

    // Print out the results
    for (SpeechRecognitionResult result : recognizeResponse.getResultsList()) {
      // There can be several alternative transcripts for a given chunk of speech. Just use the
      // first (most likely) one here.
      SpeechRecognitionAlternative alternative = result.getAlternatives(0);
      System.out.format("Transcript: %s\n\n", alternative.getTranscript());
    }
  }
}

Node.js

// Imports the Google Cloud client library for Beta API
/**
 * TODO(developer): Update client library import to use new
 * version of API when desired features become available
 */
const speech = require('@google-cloud/speech').v1p1beta1;
const fs = require('fs');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  languageCode: languageCode,
  useEnhanced: true,
  model: 'phone_call',
};
const audio = {
  content: fs.readFileSync(filename).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file
const [response] = await client.recognize(request);
response.results.forEach(result => {
  const alternative = result.alternatives[0];
  console.log(alternative.transcript);
});

Python

import io

from google.cloud import speech

client = speech.SpeechClient()

# path = 'resources/commercial_mono.wav'
with io.open(path, "rb") as audio_file:
    content = audio_file.read()

audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=8000,
    language_code="en-US",
    use_enhanced=True,
    # A model must be specified to use enhanced model.
    model="phone_call",
)

response = client.recognize(config=config, audio=audio)

for i, result in enumerate(response.results):
    alternative = result.alternatives[0]
    print("-" * 20)
    print("First alternative of result {}".format(i))
    print("Transcript: {}".format(alternative.transcript))

Idiomas adicionales

C#: Sigue las instrucciones de configuración de C# en la página de bibliotecas cliente y, luego, visita la documentación de referencia de Speech-to-Text para .NET

PHP: Sigue las instrucciones de configuración de PHP en la página de bibliotecas cliente y, luego, visita la documentación de referencia de Speech-to-Text para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Speech-to-Text para Ruby.

Limpia

Para evitar que se apliquen cargos a tu cuenta de Google Cloud por los recursos usados en este instructivo, borra el proyecto que contiene los recursos o conserva el proyecto y borra los recursos individuales.

Borra el proyecto

La manera más fácil de eliminar la facturación es borrar el proyecto que creaste para el instructivo.

Para borrar el proyecto, sigue estos pasos:

  1. En la consola de Cloud, ve a la página Administrar recursos.

    Ir a Administrar recursos

  2. En la lista de proyectos, elige el proyecto que quieres borrar y haz clic en Borrar.
  3. En el diálogo, escribe el ID del proyecto y, luego, haz clic en Cerrar para borrar el proyecto.

Borra instancias

Para borrar una instancia de Compute Engine:

  1. En Cloud Console ve a la página Instancias de VM.

    Ir a Instancias de VM

  2. Selecciona tu instancia en la casilla de verificación de es la instancia que deseas borrar.
  3. Para borrar la instancia, haz clic en Más acciones, haz clic en Borrar y, luego, sigue las instrucciones.

Borra reglas de firewall para la red predeterminada

Para borrar una regla de firewall, haz lo siguiente:

  1. En Cloud Console, ve a la página Firewall.

    Ir a Firewall

  2. Selecciona la casilla de verificación para la regla de firewall que quieres borrar.
  3. Para borrar la regla de firewall, haz clic en Borrar.