JDBC to BigQuery テンプレート
Dataproc Serverless JDBC to BigQuery テンプレートを使用して、JDBC データベースから BigQuery にデータを抽出します。
このテンプレートは、次のデータベースを入力としてサポートしています。
- MySQL
- PostgreSQL
- Microsoft SQL Server
- Oracle
テンプレートの使用
gcloud CLI または Dataproc API を使用してテンプレートを実行します。
gcloud
後述のコマンドデータを使用する前に、次のように置き換えます。
- PROJECT_ID: 必須。IAM 設定に載っている Google Cloud プロジェクト ID。
- REGION: 必須。Compute Engine のリージョン。
- TEMPLATE_VERSION: 必須。最新のテンプレート バージョンまたは特定バージョンの日付(
2023-03-17_v0.1.0-beta
など)にはlatest
を指定します(gs://dataproc-templates-binaries にアクセスするか、gcloud storage ls gs://dataproc-templates-binaries
を実行して、使用可能なテンプレート バージョンを一覧表示します)。 - SUBNET: 省略可。サブネットが指定されていない場合、
default
ネットワークの指定された REGION のサブネットが選択されます。例:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- JDBC_CONNECTOR_CLOUD_STORAGE_PATH: 必須。JDBC コネクタ jar が格納されているファイル名を含む、Cloud Storage の完全なパス。次のコマンドを使用して、Cloud Storage にアップロードする JDBC コネクタをダウンロードできます。
- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- Postgres SQL:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- MS SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
- DATASET、TABLE: 必須。宛先の BigQuery データセットとテーブル。
- 必要となる JDBC_CONNECTION_URL の作成に次の変数が使用されます。
- JDBC_HOST
- JDBC_PORT
- JDBC_DATABASE、または Oracle の場合は JDBC_SERVICE
- JDBC_USERNAME
- JDBC_PASSWORD
次のいずれかのコネクタ固有の形式を使用して JDBC_CONNECTION_URL を作成します。
- MySQL:
jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Postgres SQL:
jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- MS SQL Server:
jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
- Oracle:
jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- DRIVER: 必須。接続に使用される JDBC ドライバ:
- MySQL:
com.mysql.cj.jdbc.Driver
- Postgres SQL:
org.postgresql.Driver
- MS SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
- QUERY: 必須。JDBC からデータを抽出する SQL クエリ。
- MODE: 必須。BigQuery 出力の書き込みモード。オプション:
append
、overwrite
、ignore
、errorifexists
。 - TEMP_BUCKET: 必須。Cloud Storage バケットの名前。このバケットは BigQuery の読み込みに使用されます。
例:
gs://dataproc-templates/jdbc_to_cloud_storage_output
- INPUT_PARTITION_COLUMN、LOWERBOUND、UPPERBOUND、PARTITIONS: 省略可。使用する場合は、次のパラメータをすべて指定する必要があります。
- INPUT_PARTITION_COLUMN: JDBC 入力テーブルのパーティション列名。
- LOWERBOUND: パーティションの入力ストライドの決定に使用される JDBC 入力テーブル パーティション列の下限。
- UPPERBOUND: パーティションの入力ストライドの決定に使用される JDBC 入力テーブル パーティション列の上限。
- PARTITIONS: テーブルの読み取りと書き込みの並列処理に使用できるパーティションの最大数。
指定すると、この値が JDBC の入力接続と出力接続に使用されます。デフォルト:
10
。
- FETCHSIZE: 省略可。フェッチするラウンドトリップあたりの行数。デフォルト: 10。
- TEMPVIEW、SQL_QUERY: 省略可。 これら 2 つのオプションのパラメータを使用して、BigQuery にデータを読み込むときに Spark SQL 変換を適用できます。TEMPVIEW は一時的なビュー名で、SQL_QUERY はクエリ ステートメントです。TEMPVIEW と SQL_QUERY のテーブル名は一致する必要があります。
- SERVICE_ACCOUNT: 省略可。指定されていない場合は、デフォルトの Compute Engine サービス アカウントが使用されます。
- PROPERTY、PROPERTY_VALUE: 省略可。Spark プロパティ=
value
ペアのカンマ区切りのリスト。 - LABEL、LABEL_VALUE: 省略可。
label
=value
ペアのカンマ区切りのリスト。 - LOG_LEVEL: 省略可。ロギングのレベル。
ALL
、DEBUG
、ERROR
、FATAL
、INFO
、OFF
、TRACE
、WARN
のいずれかです。デフォルト:INFO
-
KMS_KEY: 省略可。暗号化に使用する Cloud Key Management Service 鍵。鍵が指定されていない場合、データは Google が所有し、Google が管理する鍵を使用して、保存時に暗号化されます。
例:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
次のコマンドを実行します。
Linux、macOS、Cloud Shell
gcloud dataproc batches submit spark \ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \ --version="1.2" \ --project="PROJECT_ID" \ --region="REGION" \ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" \ --subnet="SUBNET" \ --kms-key="KMS_KEY" \ --service-account="SERVICE_ACCOUNT" \ --properties="PROPERTY=PROPERTY_VALUE" \ --labels="LABEL=LABEL_VALUE" \ -- --template=JDBCTOBIGQUERY \ --templateProperty log.level="LOG_LEVEL" \ --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" \ --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" \ --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" \ --templateProperty jdbctobq.write.mode="MODE" \ --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" \ --templateProperty jdbctobq.sql="QUERY" \ --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" \ --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" \ --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" \ --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" \ --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" \ --templateProperty jdbctobq.temp.table="TEMPVIEW" \ --templateProperty jdbctobq.temp.query="SQL_QUERY"
Windows(PowerShell)
gcloud dataproc batches submit spark ` --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ` --version="1.2" ` --project="PROJECT_ID" ` --region="REGION" ` --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ` --subnet="SUBNET" ` --kms-key="KMS_KEY" ` --service-account="SERVICE_ACCOUNT" ` --properties="PROPERTY=PROPERTY_VALUE" ` --labels="LABEL=LABEL_VALUE" ` -- --template=JDBCTOBIGQUERY ` --templateProperty log.level="LOG_LEVEL" ` --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" ` --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" ` --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" ` --templateProperty jdbctobq.write.mode="MODE" ` --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" ` --templateProperty jdbctobq.sql="QUERY" ` --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" ` --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" ` --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" ` --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" ` --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" ` --templateProperty jdbctobq.temp.table="TEMPVIEW" ` --templateProperty jdbctobq.temp.query="SQL_QUERY"
Windows(cmd.exe)
gcloud dataproc batches submit spark ^ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^ --version="1.2" ^ --project="PROJECT_ID" ^ --region="REGION" ^ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar,JDBC_CONNECTOR_CLOUD_STORAGE_PATH" ^ --subnet="SUBNET" ^ --kms-key="KMS_KEY" ^ --service-account="SERVICE_ACCOUNT" ^ --properties="PROPERTY=PROPERTY_VALUE" ^ --labels="LABEL=LABEL_VALUE" ^ -- --template=JDBCTOBIGQUERY ^ --templateProperty log.level="LOG_LEVEL" ^ --templateProperty jdbctobq.bigquery.location="DATASET.TABLE" ^ --templateProperty jdbctobq.jdbc.url="JDBC_CONNECTION_URL" ^ --templateProperty jdbctobq.jdbc.driver.class.name="DRIVER" ^ --templateProperty jdbctobq.write.mode="MODE" ^ --templateProperty jdbctobq.temp.gcs.bucket="TEMP_BUCKET" ^ --templateProperty jdbctobq.sql="QUERY" ^ --templateProperty jdbctobq.sql.numPartitions="PARTITIONS" ^ --templateProperty jdbctobq.sql.partitionColumn="INPUT_PARTITION_COLUMN" ^ --templateProperty jdbctobq.sql.lowerBound="LOWERBOUND" ^ --templateProperty jdbctobq.sql.upperBound="UPPERBOUND" ^ --templateProperty jdbctobq.jdbc.fetchsize="FETCHSIZE" ^ --templateProperty jdbctobq.temp.table="TEMPVIEW" ^ --templateProperty jdbctobq.temp.query="SQL_QUERY"
REST
リクエストのデータを使用する前に、次のように置き換えます。
- PROJECT_ID: 必須。IAM 設定に載っている Google Cloud プロジェクト ID。
- REGION: 必須。Compute Engine のリージョン。
- TEMPLATE_VERSION: 必須。最新のテンプレート バージョンまたは特定バージョンの日付(
2023-03-17_v0.1.0-beta
など)にはlatest
を指定します(gs://dataproc-templates-binaries にアクセスするか、gcloud storage ls gs://dataproc-templates-binaries
を実行して、使用可能なテンプレート バージョンを一覧表示します)。 - SUBNET: 省略可。サブネットが指定されていない場合、
default
ネットワークの指定された REGION のサブネットが選択されます。例:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- JDBC_CONNECTOR_CLOUD_STORAGE_PATH: 必須。JDBC コネクタ jar が格納されているファイル名を含む、Cloud Storage の完全なパス。次のコマンドを使用して、Cloud Storage にアップロードする JDBC コネクタをダウンロードできます。
- MySQL:
wget http://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.30.tar.gz
- Postgres SQL:
wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
- MS SQL Server:
wget https://repo1.maven.org/maven2/com/microsoft/sqlserver/mssql-jdbc/6.4.0.jre8/mssql-jdbc-6.4.0.jre8.jar
- Oracle:
wget https://repo1.maven.org/maven2/com/oracle/database/jdbc/ojdbc8/21.7.0.0/ojdbc8-21.7.0.0.jar
- MySQL:
- DATASET、TABLE: 必須。宛先の BigQuery データセットとテーブル。
- 必要となる JDBC_CONNECTION_URL の作成に次の変数が使用されます。
- JDBC_HOST
- JDBC_PORT
- JDBC_DATABASE、または Oracle の場合は JDBC_SERVICE
- JDBC_USERNAME
- JDBC_PASSWORD
次のいずれかのコネクタ固有の形式を使用して JDBC_CONNECTION_URL を作成します。
- MySQL:
jdbc:mysql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- Postgres SQL:
jdbc:postgresql://JDBC_HOST:JDBC_PORT/JDBC_DATABASE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- MS SQL Server:
jdbc:sqlserver://JDBC_HOST:JDBC_PORT;databaseName=JDBC_DATABASE;user=JDBC_USERNAME;password=JDBC_PASSWORD
- Oracle:
jdbc:oracle:thin:@//JDBC_HOST:JDBC_PORT/JDBC_SERVICE?user=JDBC_USERNAME&password=JDBC_PASSWORD
- DRIVER: 必須。接続に使用される JDBC ドライバ:
- MySQL:
com.mysql.cj.jdbc.Driver
- Postgres SQL:
org.postgresql.Driver
- MS SQL Server:
com.microsoft.sqlserver.jdbc.SQLServerDriver
- Oracle:
oracle.jdbc.driver.OracleDriver
- MySQL:
- QUERY: 必須。JDBC からデータを抽出する SQL クエリ。
- MODE: 必須。BigQuery 出力の書き込みモード。オプション:
append
、overwrite
、ignore
、errorifexists
。 - TEMP_BUCKET: 必須。Cloud Storage バケットの名前。このバケットは BigQuery の読み込みに使用されます。
例:
gs://dataproc-templates/jdbc_to_cloud_storage_output
- INPUT_PARTITION_COLUMN、LOWERBOUND、UPPERBOUND、PARTITIONS: 省略可。使用する場合は、次のパラメータをすべて指定する必要があります。
- INPUT_PARTITION_COLUMN: JDBC 入力テーブルのパーティション列名。
- LOWERBOUND: パーティションの入力ストライドの決定に使用される JDBC 入力テーブル パーティション列の下限。
- UPPERBOUND: パーティションの入力ストライドの決定に使用される JDBC 入力テーブル パーティション列の上限。
- PARTITIONS: テーブルの読み取りと書き込みの並列処理に使用できるパーティションの最大数。
指定すると、この値が JDBC の入力接続と出力接続に使用されます。デフォルト:
10
。
- FETCHSIZE: 省略可。フェッチするラウンドトリップあたりの行数。デフォルト: 10。
- TEMPVIEW、SQL_QUERY: 省略可。 これら 2 つのオプションのパラメータを使用して、BigQuery にデータを読み込むときに Spark SQL 変換を適用できます。TEMPVIEW は一時的なビュー名で、SQL_QUERY はクエリ ステートメントです。TEMPVIEW と SQL_QUERY のテーブル名は一致する必要があります。
- SERVICE_ACCOUNT: 省略可。指定されていない場合は、デフォルトの Compute Engine サービス アカウントが使用されます。
- PROPERTY、PROPERTY_VALUE: 省略可。Spark プロパティ=
value
ペアのカンマ区切りのリスト。 - LABEL、LABEL_VALUE: 省略可。
label
=value
ペアのカンマ区切りのリスト。 - LOG_LEVEL: 省略可。ロギングのレベル。
ALL
、DEBUG
、ERROR
、FATAL
、INFO
、OFF
、TRACE
、WARN
のいずれかです。デフォルト:INFO
-
KMS_KEY: 省略可。暗号化に使用する Cloud Key Management Service 鍵。鍵が指定されていない場合、データは Google が所有し、Google が管理する鍵を使用して、保存時に暗号化されます。
例:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
HTTP メソッドと URL:
POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches
リクエストの本文(JSON):
{ "environmentConfig": { "executionConfig": { "subnetworkUri": "SUBNET", "kmsKey": "KMS_KEY", "serviceAccount": "SERVICE_ACCOUNT" } }, "labels": { "LABEL": "LABEL_VALUE" }, "runtimeConfig": { "version": "1.2", "properties": { "PROPERTY": "PROPERTY_VALUE" } }, "sparkBatch": { "mainClass": "com.google.cloud.dataproc.templates.main.DataProcTemplate", "args": [ "--template","JDBCTOBIGQUERY", "--templateProperty","log.level=LOG_LEVEL", "--templateProperty","jdbctobq.bigquery.location=DATASET.TABLE", "--templateProperty","jdbctobq.jdbc.url=JDBC_CONNECTION_URL", "--templateProperty","jdbctobq.jdbc.driver.class.name=DRIVER", "--templateProperty","jdbctobq.sql=QUERY", "--templateProperty","jdbctobq.write.mode=MODE", "--templateProperty","jdbctobq.temp.gcs.bucket=TEMP_BUCKET", "--templateProperty","jdbctobq.sql.partitionColumn=INPUT_PARTITION_COLUMN", "--templateProperty","jdbctobq.sql.lowerBound=LOWERBOUND", "--templateProperty","jdbctobq.sql.upperBound=UPPERBOUND", "--templateProperty","jdbctobq.sql.numPartitions=PARTITIONS", "--templateProperty","jdbctobq.jdbc.fetchsize=FETCHSIZE" ], "jarFileUris": [ "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar","gs://JDBC_CONNECTOR_GCS_PATH" ] } }
リクエストを送信するには、次のいずれかのオプションを展開します。
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }