Cloud Composer 1 | Cloud Composer 2 | Cloud Composer 3
Auf dieser Seite wird beschrieben, wie Sie Python-Pakete für Ihre Cloud Composer-Umgebung installieren.
Vorinstallierte und benutzerdefinierte PyPI-Pakete in Cloud Composer-Images
Cloud Composer-Images enthalten sowohl vorinstalliertes als auch benutzerdefiniertes PyPI Pakete.
Vorinstallierte PyPI-Pakete sind Pakete, die im Cloud Composer-Image Ihrer Umgebung enthalten sind. Jedes Cloud Composer-Image enthält PyPI-Pakete, die für Ihre Version von Cloud Composer und Airflow spezifisch sind.
Benutzerdefinierte PyPI-Pakete sind Pakete, die Sie in Ihrer Umgebung in zu den vorinstallierten Paketen.
Optionen zum Verwalten von PyPI-Paketen für Cloud Composer-Umgebungen
Option | Verwenden, wenn |
---|---|
Von PyPI installieren | Standardmethode zum Installieren von Paketen in Ihrer Umgebung |
Aus einem Repository mit einer öffentlichen IP-Adresse installieren | Das Paket wird in einem anderen Paket-Repository als PyPI gehostet. Dieses Repository hat eine öffentliche IP-Adresse. |
Aus einem Artifact Registry-Repository installieren | Das Paket wird in einem Artifact Registry-Repository gehostet. |
Über ein Repository im Netzwerk Ihres Projekts installieren | Ihre Umgebung hat keinen Zugriff auf das öffentliche Internet. Das Paket wird in einem Paket-Repository im Netzwerk Ihres Projekts gehostet. |
Als lokale Python-Bibliothek installieren |
Das Paket und die Bibliothek können nicht in PyPI gefunden werden
hat keine externen Abhängigkeiten wie dist-packages . |
Plug-in installieren | Das Paket bietet Plug-in-spezifische Funktionen, z. B. zum Ändern der Airflow-Weboberfläche. |
PythonVirtualenvOperator | Sie möchten nicht, dass das Paket für alle Airflow-Worker installiert wird, oder die Abhängigkeit steht mit vorinstallierten Paketen in Konflikt. Das Paket befindet sich im PyPI und hat keine externen Abhängigkeiten. |
KubernetesPodOperator und GKE-Operatoren |
Sie benötigen externe Abhängigkeiten, die nicht über pip installiert werden können.
wie dist-packages oder die sich auf einem internen PIP-Server befinden. Diese Option erfordert mehr Einrichtung und Wartung. Sie sollten diese Option nur in Betracht ziehen, wenn andere Optionen nicht funktionieren. |
Hinweise
- Sie benötigen eine Rolle, die Umgebungsaktualisierungsvorgänge auslösen kann. Darüber hinaus muss das Dienstkonto der Umgebung eine Rolle mit ausreichenden Berechtigungen zum Ausführen von Aktualisierungsvorgängen haben. Weitere Informationen finden Sie unter Zugriffssteuerung.
- Wenn Ihre Umgebung durch einen VPC Service Controls-Perimeter geschützt ist, müssen Sie vor der Installation von PyPI-Abhängigkeiten zusätzliche Nutzeridentitäten mit Zugriff auf Dienste gewähren, die durch den Dienstperimeter geschützt werden, und die Unterstützung für ein privates PyPI-Repository ermöglichen.
- Die Anforderungen müssen dem in PEP-508 angegebenen Format entsprechen, wobei jede Anforderung in Kleinbuchstaben angegeben wird und aus dem Paketnamen mit optionalen Extras und Versionsangaben besteht.
PyPI-Abhängigkeitsaktualisierungen generieren Docker-Images in Artifact Registry:
Wenn ein Abhängigkeitskonflikt dazu führt, dass die Aktualisierung fehlschlägt, wird die Ausführung Ihrer Umgebung mit den vorhandenen Abhängigkeiten fortgeführt. Wenn der Vorgang erfolgreich ist, können Sie die neu installierten Python-Abhängigkeiten in Ihren DAGs verwenden.
Wenn Sie möchten, dass Ihre Builds mit einem benutzerdefinierten Dienstkonto ausgeführt werden, können Sie die
COMPOSER_AGENT_BUILD_SERVICE_ACCOUNT
-Umgebungsvariable mit dem ausgewählten Dienstkonto überschreiben. Dieses Dienstkonto sollte gemäß der Cloud Build-Dokumentation für die Ausführung von Builds konfiguriert sein. Das Dienstkonto der Umgebung sollte die Berechtigungiam.serviceAccounts.actAs
haben.Projekte, bei denen Die Cloud Composer API wird ab dem 29. April 2024 aktiviert. Sofern Ihre Organisation die
constraints/cloudbuild.disableCreateDefaultServiceAccount
Richtlinie, neue Projekte das Legacy-Cloud Build-Dienstkonto nicht bereitstellt zum Aktivieren der API. Da Cloud Build standardmäßig verwendet wird, wenn Benutzerdefinierte PyPI-Pakete in Cloud Composer installieren kann die Installation der Pakete fehlschlagen. Standardmäßig wird stattdessen das Dienstkonto der Umgebung verwendet. Achten Sie daher darauf, diesem Dienstkonto alle zusätzlichen Berechtigungen zu erteilen, die für den Zugriff auf Ihre privaten Pakete erforderlich sind.
Liste der PyPI-Pakete ansehen
Sie können die Liste der Pakete für Ihre Umgebung in verschiedenen Formaten abrufen.
Vorinstallierte Pakete ansehen
Eine Liste der vorinstallierten Pakete für Ihre Umgebung finden Sie in der Paketliste für das Cloud Composer-Image Ihrer Umgebung.
Alle Pakete ansehen
So rufen Sie alle Pakete (sowohl vorinstallierte als auch benutzerdefinierte) in Ihrer Umgebung auf:
gcloud
Der folgende gcloud CLI-Befehl gibt das Ergebnis des Befehls python -m pip list
für einen Airflow-Worker in Ihrer Umgebung zurück.
Mit dem Argument --tree
können Sie das Ergebnis des
python -m pipdeptree --warn
-Befehl.
gcloud beta composer environments list-packages \
ENVIRONMENT_NAME \
--location LOCATION
Ersetzen Sie:
ENVIRONMENT_NAME
durch den Namen der Umgebung.LOCATION
durch die Region, in der sich die Umgebung befindet.
Benutzerdefinierte PyPI-Pakete ansehen
Console
Rufen Sie in der Google Cloud Console die Seite Umgebungen auf.
Klicken Sie in der Liste der Umgebungen auf den Namen Ihrer Umgebung. Die Seite Umgebungsdetails wird geöffnet.
Rufen Sie den Tab PyPI-Pakete auf.
gcloud
gcloud composer environments describe ENVIRONMENT_NAME \
--location LOCATION \
--format="value(config.softwareConfig.pypiPackages)"
Ersetzen Sie:
ENVIRONMENT_NAME
durch den Namen der Umgebung.LOCATION
durch die Region, in der sich die Umgebung befindet.
Benutzerdefinierte Pakete in einer Cloud Composer-Umgebung installieren
In diesem Abschnitt werden verschiedene Methoden zum Installieren von benutzerdefinierten Paketen in Ihrem zu verbessern.
Pakete aus PyPI installieren
Ein Paket kann aus dem Python-Paketindex installiert werden, wenn es keine externen Abhängigkeiten hat oder nicht mit vorinstallierten Paketen in Konflikt steht.
So können Sie die Python-Abhängigkeiten für Ihre Umgebung hinzufügen, aktualisieren oder löschen:
Console
Rufen Sie in der Google Cloud Console die Seite Umgebungen auf.
Klicken Sie in der Liste der Umgebungen auf den Namen Ihrer Umgebung. Die Seite Umgebungsdetails wird geöffnet.
Rufen Sie den Tab PyPI-Pakete auf.
Klicken Sie auf Bearbeiten.
Klicken Sie auf Paket hinzufügen.
Geben Sie im Abschnitt PyPI-Pakete Paketnamen mit optionalen Versionsangaben und Extras an.
Beispiel:
scikit-learn
scipy
,>=0.13.3
nltk
,[machine_learning]
Klicken Sie auf Speichern.
gcloud
Die gcloud CLI hat mehrere Vorteile für die Arbeit mit benutzerdefinierten PyPI Pakete:
--update-pypi-packages-from-file
ersetzt alle vorhandenen benutzerdefinierten PyPI-Pakete mit den angegebenen Paketen. Pakete, die nicht von Ihnen stammen werden entfernt.--update-pypi-package
aktualisiert oder installiert ein Paket.--remove-pypi-packages
entfernt die angegebenen Pakete.--clear-pypi-packages
entfernt alle Pakete.
Anforderungen aus einer Datei installieren
In der requirements.txt
-Datei muss jeder Anforderungsspezifizierer in einer separaten Zeile stehen.
Beispiel:
scipy>=0.13.3
scikit-learn
nltk[machine_learning]
Aktualisieren Sie Ihre Umgebung und geben Sie die Datei requirements.txt
in
Das Argument --update-pypi-packages-from-file
.
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--update-pypi-packages-from-file requirements.txt
Ersetzen Sie:
ENVIRONMENT_NAME
durch den Namen der Umgebung.LOCATION
durch die Region, in der sich die Umgebung befindet.
Ein Paket installieren
Aktualisieren Sie Ihre Umgebung und geben Sie das Paket, die Version und die Extras im --update-pypi-package
-Argument an.
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--update-pypi-package PACKAGE_NAMEEXTRAS_AND_VERSION
Ersetzen Sie:
ENVIRONMENT_NAME
durch den Namen der Umgebung.LOCATION
durch die Region, in der sich die Umgebung befindet.PACKAGE_NAME
durch den Namen des Pakets.EXTRAS_AND_VERSION
mit der optionalen Versions- und Extraangabe. Bis Versionen und Extras auslassen, geben Sie einen leeren Wert an.
Beispiel:
gcloud composer environments update example-environment \
--location us-central1 \
--update-pypi-package "scipy>=0.13.3"
Pakete entfernen
Aktualisieren Sie Ihre Umgebung und geben Sie die Pakete, die Sie löschen möchten, im --remove-pypi-packages
-Argument an:
gcloud composer environments update ENVIRONMENT_NAME \
--location LOCATION \
--remove-pypi-packages PACKAGE_NAMES
Ersetzen Sie:
ENVIRONMENT_NAME
durch den Namen der Umgebung.LOCATION
durch die Region, in der sich die Umgebung befindet.PACKAGE_NAMES
durch eine durch Kommas getrennte Liste von Paketen.
Beispiel:
gcloud composer environments update example-environment \
--location us-central1 \
--remove-pypi-packages scipy,scikit-learn
API
Erstellen Sie eine API-Anfrage environments.patch
.
In dieser Anfrage:
Geben Sie im Parameter
updateMask
die Maske an:- Verwenden Sie die Maske
config.softwareConfig.pypiPackages
, um alle vorhandenen Pakete durch die angegebenen Pakete zu ersetzen. Pakete, die nicht von Ihnen stammen werden gelöscht. - Verwenden Sie
config.softwareConfig.envVariables.PACKAGE_NAME
zum Hinzufügen oder ein bestimmtes Paket zu aktualisieren. Wenn Sie mehrere Pakete hinzufügen oder aktualisieren möchten, mehrere Masken durch Kommas zu trennen.
- Verwenden Sie die Maske
Geben Sie im Anfragetext Pakete und Werte für Versionen und Extras an:
{ "config": { "softwareConfig": { "pypiPackages": { "PACKAGE_NAME": "EXTRAS_AND_VERSION" } } } }
Ersetzen Sie:
PACKAGE_NAME
durch den Namen des Pakets.EXTRAS_AND_VERSION
mit dem optionalen Bezeichner für Version und Extras. Bis Versionen und Extras auslassen, geben Sie einen leeren Wert an.- Wenn Sie mehrere Pakete hinzufügen möchten, fügen Sie zusätzliche Einträge für Pakete hinzu
an
pypiPackages
.
Beispiel:
// PATCH https://composer.googleapis.com/v1/projects/example-project/
// locations/us-central1/environments/example-environment?updateMask=
// config.softwareConfig.pypiPackages.EXAMPLE_PACKAGE,
// config.softwareConfig.pypiPackages.ANOTHER_PACKAGE
{
"config": {
"softwareConfig": {
"pypiPackages": {
"EXAMPLE_PACKAGE": "",
"ANOTHER_PACKAGE": ">=1.10.3"
}
}
}
}
Terraform
Der Block pypi_packages
im Block software_config
gibt Pakete an.
resource "google_composer_environment" "example" {
provider = google-beta
name = "ENVIRONMENT_NAME"
region = "LOCATION"
config {
software_config {
pypi_packages = {
PACKAGE_NAME = "EXTRAS_AND_VERSION"
}
}
}
}
Ersetzen Sie:
ENVIRONMENT_NAME
durch den Namen der Umgebung.LOCATION
durch die Region, in der sich die Umgebung befindet.PACKAGE_NAME
durch den Namen des Pakets.EXTRAS_AND_VERSION
mit der optionalen Versions- und Extraangabe. Bis Versionen und Extras auslassen, geben Sie einen leeren Wert an.- Wenn Sie mehrere Pakete hinzufügen möchten, fügen Sie zusätzliche Einträge für Pakete hinzu
an
pypi_packages
.
Beispiel:
resource "google_composer_environment" "example" {
provider = google-beta
name = "example-environment"
region = "us-central1"
config {
software_config {
pypi_packages = {
scipy = ">=1.10.3"
scikit-learn = ""
nltk = "[machine_learning]"
}
}
}
}
Pakete aus einem öffentlichen Repository installieren
Sie können Pakete installieren, die in anderen Repositories mit einer öffentlichen IP-Adresse gehostet werden.
Die Pakete müssen richtig konfiguriert sein, damit sie mit dem Standardtool pip
installiert werden können.
So installieren Sie aus einem Paket-Repository mit einer öffentlichen Adresse:
Erstellen Sie eine pip.conf-Datei und fügen Sie gegebenenfalls die folgenden Informationen in die Datei ein:
- URL des Repositorys (im Parameter
index-url
) - Anmeldedaten für den Zugriff auf das Repository
- Nicht standardmäßige Installationsoptionen für
pip
Beispiel:
[global] index-url=https://example.com/
- URL des Repositorys (im Parameter
(Optional) In einigen Fällen möchten Sie vielleicht Pakete von mehreren z. B. wenn das öffentliche Repository bestimmte Pakete, die Sie installieren möchten, und alle anderen Pakete aus PyPI:
- Konfigurieren Sie ein virtuelles Artifact Registry-Repository.
- Fügen Sie eine Konfiguration für mehrere Repositories hinzu (einschließlich PyPI, falls erforderlich) und definieren Sie die Reihenfolge, in der
pip
die Repositories durchsucht. - Geben Sie die URL des virtuellen Repositorys im Parameter
index-url
an.
Laden Sie die Datei „pip.conf“ in den
/config/pip/
hoch. im Bucket Ihrer Umgebung.Installieren Sie Pakete mit einer der verfügbaren Methoden.
Pakete aus einem Artifact Registry-Repository installieren
Sie können Pakete in einem Artifact Registry-Repository speichern. in Ihrem Projekt erstellen und Ihre Umgebung für die Installation konfigurieren.
Konfigurieren Sie Rollen und Berechtigungen:
Das Dienstkonto Ihrer Umgebung muss die Rolle
iam.serviceAccountUser
haben.Das Cloud Build-Dienstkonto muss Berechtigungen zum Lesen aus Ihrem Artifact Registry-Repository haben.
Wenn in Ihrer Umgebung der Zugriff auf andere Dienste in der Wenn Sie beispielsweise VPC Service Controls verwenden, gilt Folgendes:
Berechtigungen für den Zugriff auf Ihr Artifact Registry-Repository zuweisen das Dienstkonto der Umgebung anstelle des Cloud Build-Dienstkonto.
Achten Sie darauf, dass die Verbindung zum Artifact Registry-Repository die in Ihrem Projekt konfiguriert sind.
So installieren Sie benutzerdefinierte PyPI-Pakete aus einem Artifact Registry-Repository:
Erstellen Sie eine pip.conf-Datei und fügen Sie gegebenenfalls die folgenden Informationen in die Datei ein:
- URL des Artifact Registry-Repositorys (im Parameter
index-url
) - Anmeldedaten für den Zugriff auf das Repository
- Nicht standardmäßige Installationsoptionen für
pip
Fügen Sie bei einem Artifact Registry-Repository
/simple/
an die Repository-URL an:[global] index-url = https://us-central1-python.pkg.dev/example-project/example-repository/simple/
- URL des Artifact Registry-Repositorys (im Parameter
(Optional) In einigen Fällen möchten Sie vielleicht Pakete von mehreren Repositories, z. B. wenn Ihr Artifact Registry-Repository bestimmte Pakete, die Sie installieren möchten alle anderen Pakete aus PyPI:
- Konfigurieren Sie ein virtuelles Artifact Registry-Repository.
- Konfiguration für mehrere Repositories hinzufügen (falls erforderlich einschließlich PyPI)
Legen Sie außerdem die Reihenfolge fest, in der
pip
die Repositories durchsucht. - Geben Sie die URL des virtuellen Repositorys im Parameter
index-url
an.
Laden Sie diese pip.conf-Datei in den Ordner
/config/pip/
im Bucket Ihrer Umgebung hoch. Beispiel:gs://us-central1-example-bucket/config/pip/pip.conf
.Installieren Sie Pakete mit einer der verfügbaren Methoden.
Pakete aus einem privaten Repository installieren
Sie können ein privates Repository im Netzwerk Ihres Projekts hosten und Ihre Umgebung so konfigurieren, dass Python-Pakete daraus installiert werden.
Rollen und Berechtigungen konfigurieren:
Das Dienstkonto für Ihre Cloud Composer-Umgebung muss haben die Rolle
iam.serviceAccountUser
.Wenn Sie benutzerdefinierte PyPI-Pakete aus einem Repository im Netzwerk Ihres Projekts installieren und dieses Repository keine öffentliche IP-Adresse hat, gehen Sie so vor:
Weisen Sie Berechtigungen zum Zugriff auf dieses Repository zu den der Umgebung Dienstkonto.
Achten Sie darauf, dass die Verbindung zu diesem Repository in Ihrem Projekt arbeiten.
So installieren Sie Pakete aus einem privaten Repository, das im Netzwerk Ihres Projekts gehostet wird:
Erstellen Sie eine pip.conf-Datei und fügen Sie gegebenenfalls die folgenden Informationen in die Datei ein:
- IP-Adresse des Repositorys im Netzwerk Ihres Projekts
- Anmeldedaten für den Zugriff auf das Repository
- Nicht standardmäßige Installationsoptionen für
pip
Beispiel:
[global] index-url=https://192.0.2.10/
Optional: In einigen Fällen möchten Sie Pakete aus mehreren Repositories abrufen, z. B. wenn das private Repository bestimmte Pakete enthält, die Sie installieren möchten, und Sie alle anderen Pakete von PyPI installieren möchten:
- Konfigurieren Sie ein virtuelles Artifact Registry-Repository.
- Konfiguration für mehrere Repositories hinzufügen (falls erforderlich einschließlich PyPI)
und definieren Sie die Reihenfolge, in der
pip
die Repositories durchsucht. - Geben Sie die URL des virtuellen Repositorys im Parameter
index-url
an.
(Optional) Ab Version 2.2.1 von Cloud Composer können Sie: benutzerdefiniertes Zertifikat verwenden, wenn Sie Pakete aus Ihrer privaten zu erstellen. Anleitung:
Laden Sie die Zertifikatsdatei hoch in den
/config/pip/
im Bucket Ihrer Umgebung.Geben Sie in der Datei „pip.conf“ im Parameter
cert
den Namen der Zertifikatdatei an. Ändern Sie nicht den Ordner/etc/pip/
.Beispiel:
[global] cert =/etc/pip/example-certificate.pem
Laden Sie die Datei „pip.conf“ in den
/config/pip/
hoch. im Bucket Ihrer Umgebung. Beispiel:gs://us-central1-example-bucket/config/pip/pip.conf
.Pakete können mit einer der verfügbaren Methoden installiert werden.
Lokale Python-Bibliothek installieren
So installieren Sie eine interne oder lokale Python-Bibliothek:
Platzieren Sie die Abhängigkeiten in einem Unterverzeichnis im
dags/
-Ordner im Bucket Ihrer Umgebung. Zum Importieren eines Moduls aus einem Unterverzeichnis muss jedes Unterverzeichnis im Pfad des Moduls die Markierungsdatei eines__init__.py
-Pakets enthalten.Im folgenden Beispiel lautet die Abhängigkeit
coin_module.py
:dags/ use_local_deps.py # A DAG file. dependencies/ __init__.py coin_module.py
Importieren Sie die Abhängigkeit aus der DAG-Definitionsdatei.
Beispiel:
Pakete verwenden, die von gemeinsam genutzten Objektbibliotheken abhängen
Bestimmte PyPI-Pakete hängen von Bibliotheken auf Systemebene ab. Obwohl Systembibliotheken von Cloud Composer nicht unterstützt werden, stehen Ihnen folgende Optionen zur Verfügung:
KubernetesPodOperator verwenden. Benutzerdefinierten Operatorbild festlegen Build-Image. Verwenden Sie diese Option, wenn Pakete während der Installation aufgrund einer nicht erfüllten Systemabhängigkeit fehlschlagen.
Laden Sie die gemeinsam genutzten Objektbibliotheken in den Bucket Ihrer Umgebung hoch. Wenn Ihr PyPI -Pakete, die erfolgreich installiert wurden, aber zur Laufzeit fehlschlagen, verwenden Sie diese Option.
- Gemeinsam genutzte Objektbibliotheken für die PyPI-Abhängigkeit manuell finden (eine SO-Datei).
- Laden Sie die gemeinsam genutzten Objektbibliotheken in den Ordner
/plugins
im Bucket Ihrer Umgebung hoch. - Legen Sie die folgende Umgebungsvariable fest:
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/airflow/gcs/plugins
Pakete in privaten IP-Umgebungen installieren
In diesem Abschnitt wird erläutert, wie Sie Pakete in privaten IP-Umgebungen installieren.
Je nachdem, wie Sie Ihr Projekt konfigurieren, verfügt Ihre Umgebung möglicherweise nicht über Zugang zum öffentlichen Internet.
Private IP-Umgebung mit Zugriff auf das öffentliche Internet
Wenn Ihre private IP-Umgebung auf das öffentliche Internet zugreifen kann, Installieren Sie Pakete mithilfe von Optionen für öffentliche IP-Umgebungen:
- Von PyPI installieren. In diesem Fall ist keine spezielle Konfiguration erforderlich. Folgen Sie der Anleitung unter Paket aus PyPI installieren
- Installation aus einem Repository mit einer öffentlichen IP-Adresse Folgen Sie der Anleitung unter Paket aus einem privaten Repository installieren
- Installation über ein privates PyPI-Repository in Ihrem Netzwerk des Projekts.
Private IP-Umgebung ohne Internetzugang
Wenn Ihre private IP-Umgebung keinen Zugriff auf das öffentliche Internet hat, können Sie Pakete auf eine der folgenden Arten installieren:
- Verwenden Sie ein privates PyPI-Repository, das im Netzwerk.
- Verwenden Sie eine Proxyserver-VM im Netzwerk Ihres Projekts, um eine Verbindung zu einem PyPI-Repository im öffentlichen Internet herzustellen. Geben Sie die Proxyadresse in der Datei
/config/pip/pip.conf
im Bucket Ihrer Umgebung an. - Verwenden Sie ein Artifact Registry-Repository als einzige Paketquelle. Dazu müssen Sie den Parameter
index-url
wie beschrieben neu definieren. - Wenn Ihre Sicherheitsrichtlinie den Zugriff auf externe IP-Adressen von Ihrem VPC-Netzwerk können Sie die Installation von Paketen aus Repositories im öffentlichen Internet, indem Sie Cloud NAT konfigurieren.
- Geben Sie die Python-Abhängigkeiten im Bucket Ihrer Umgebung in den Ordner
/dags
ein, um sie als lokale Bibliotheken zu installieren. Dies ist möglicherweise keine gute Option, wenn die Abhängigkeitsstruktur groß ist.
In einer privaten IP-Umgebung unter Einschränkungen des Ressourcenstandorts installieren
Wenn Sie Ihr Projekt an den Anforderungen für Ressourcenstandorte ausrichten, ist die Verwendung einiger Tools untersagt. Insbesondere Cloud Build kann nicht für die Paketinstallation verwendet werden, wodurch der direkte Zugriff auf im öffentlichen Internet.
Wenn Sie Python-Abhängigkeiten in einer solchen Umgebung installieren möchten, folgen Sie der Anleitung für private IP-Umgebungen ohne Internetzugriff.
Python-Abhängigkeit für eine private IP-Umgebung in einem VPC Service Controls-Perimeter installieren
Schützen Sie Ihr Projekt mit einem VPC Service Controls-Perimeter führt zu weiteren Sicherheitseinschränkungen. Insbesondere Cloud Build kann nicht für die Paketinstallation verwendet werden, wodurch der direkte Zugriff auf im öffentlichen Internet.
So installieren Sie Python-Abhängigkeiten für eine private IP-Umgebung in einem Perimeter: Folgen Sie der Anleitung für private IP-Umgebungen ohne Internetzugang.