顔検出のチュートリアル


目標

このサンプルでは、Google Vision API を使用して画像の中の顔を検出します。顔が正しく検出されたことを証明するために、このデータを使用して顔のそれぞれを囲むボックスを描画します。

費用

このドキュメントでは、Google Cloud の次の課金対象のコンポーネントを使用します。

  • Cloud Vision

料金計算ツールを使うと、予想使用量に基づいて費用の見積もりを生成できます。 新しい Google Cloud ユーザーは無料トライアルをご利用いただける場合があります。

始める前に

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Google Cloud Vision API.

    Enable the API

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the Google Cloud Vision API.

    Enable the API

  8. アプリケーションのデフォルト認証情報を使用するための環境を設定します。
  9. 言語固有のタスクとツールを設定します。

    C#

    Java

    • Java をインストールします。
    • API リファレンス
    • Apache Maven ビルドシステムをダウンロードしてインストールします。Maven を使用すると、Google API クライアント ライブラリと Vision API のクライアント ライブラリがインストールされている状態でプロジェクトをビルドできます。これは、これらのライブラリが pom.xml で指定されているためです。

      <dependency>
        <groupId>com.google.apis</groupId>
        <artifactId>google-api-services-vision</artifactId>
        <version>v1-rev20231219-2.0.0</version>
      </dependency>
      <dependency>
        <groupId>com.google.auth</groupId>
        <artifactId>google-auth-library-oauth2-http</artifactId>
      </dependency>
      <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
      </dependency>
      <dependency>
        <groupId>com.google.http-client</groupId>
        <artifactId>google-http-client-jackson2</artifactId>
      </dependency>
      ...

    Node.js

    • Google クライアント ライブラリをインストールします。
    • node.js をインストールします。
    • API リファレンス
    • npmnode-canvas をインストールします。サンプルコードには、npm install コマンドを使用してすべての依存関係をインストールする package.json が含まれています。node-canvas には、この他にもインストールが必要な依存関係が存在することがあります。詳しくは、node-canvas のインストール ドキュメントをご覧ください。

      {
        "name": "nodejs-docs-samples-vision",
        "private": true,
        "license": "Apache-2.0",
        "author": "Google LLC",
        "engines": {
          "node": ">=16.0.0"
        },
        "files": [
          "*.js"
        ],
        "scripts": {
          "test": "c8 mocha -p -j 2 system-test --timeout 600000"
        },
        "dependencies": {
          "@google-cloud/vision": "^4.0.0",
          "natural": "^7.0.0",
          "pureimage": "^0.3.17",
          "redis": "^4.6.5",
          "yargs": "^17.7.1"
        },
        "devDependencies": {
          "@google-cloud/storage": "^7.0.0",
          "@types/uuid": "^10.0.0",
          "@types/yargs": "^17.0.22",
          "c8": "^10.0.0",
          "chai": "^4.2.0",
          "mocha": "^10.2.0",
          "uuid": "^10.0.0"
        }
      }
      

    PHP

    Python

    Ruby

サービス オブジェクトを作成する

Google の API に公式クライアント SDK を使用してアクセスするには、その API のディスカバリ ドキュメントに基づいてサービス オブジェクトを作成します。このドキュメントは、SDK に対する API を記述するものです。デベロッパーは、自分の認証情報を使用してこのドキュメントを Vision API のディスカバリ サービスから取得する必要があります。

Java

import com.google.api.client.googleapis.javanet.GoogleNetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.gson.GsonFactory;
import com.google.api.services.vision.v1.Vision;
import com.google.api.services.vision.v1.VisionScopes;
import com.google.api.services.vision.v1.model.AnnotateImageRequest;
import com.google.api.services.vision.v1.model.AnnotateImageResponse;
import com.google.api.services.vision.v1.model.BatchAnnotateImagesRequest;
import com.google.api.services.vision.v1.model.BatchAnnotateImagesResponse;
import com.google.api.services.vision.v1.model.FaceAnnotation;
import com.google.api.services.vision.v1.model.Feature;
import com.google.api.services.vision.v1.model.Image;
import com.google.api.services.vision.v1.model.Vertex;
import com.google.auth.http.HttpCredentialsAdapter;
import com.google.auth.oauth2.GoogleCredentials;
import com.google.common.collect.ImmutableList;
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.Polygon;
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.security.GeneralSecurityException;
import java.util.List;
import javax.imageio.ImageIO;
/** Connects to the Vision API using Application Default Credentials. */
public static Vision getVisionService() throws IOException, GeneralSecurityException {
  GoogleCredentials credential =
      GoogleCredentials.getApplicationDefault().createScoped(VisionScopes.all());
  JsonFactory jsonFactory = GsonFactory.getDefaultInstance();
  return new Vision.Builder(
          GoogleNetHttpTransport.newTrustedTransport(),
          jsonFactory,
          new HttpCredentialsAdapter(credential))
      .setApplicationName(APPLICATION_NAME)
      .build();
}

Node.js

// By default, the client will authenticate using the service account file
// specified by the GOOGLE_APPLICATION_CREDENTIALS environment variable and use
// the project specified by the GCLOUD_PROJECT environment variable. See
// https://googlecloudplatform.github.io/gcloud-node/#/docs/google-cloud/latest/guides/authentication
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();

const fs = require('fs');

Python

from google.cloud import vision
from PIL import Image, ImageDraw
client = vision.ImageAnnotatorClient()

顔検出リクエストを送信する

Vision API へのリクエストを作成するには、最初に API のドキュメントを調べます。この場合、images リソースを annotate 画像へリクエストします。この API へのリクエストは、requests リストを持つオブジェクト形式になります。このリスト内のアイテムのそれぞれに、次の 2 つの情報が格納されます。

  • base64 エンコード済みの画像データ
  • その画像についてアノテーションを付けたい機能のリスト

この例では、1 つの画像の FACE_DETECTION アノテーションをリクエストし、該当する画像部分のレスポンスを返します。

Java

/** Gets up to {@code maxResults} faces for an image stored at {@code path}. */
public List<FaceAnnotation> detectFaces(Path path, int maxResults) throws IOException {
  byte[] data = Files.readAllBytes(path);

  AnnotateImageRequest request =
      new AnnotateImageRequest()
          .setImage(new Image().encodeContent(data))
          .setFeatures(
              ImmutableList.of(
                  new Feature().setType("FACE_DETECTION").setMaxResults(maxResults)));
  Vision.Images.Annotate annotate =
      vision
          .images()
          .annotate(new BatchAnnotateImagesRequest().setRequests(ImmutableList.of(request)));
  // Due to a bug: requests to Vision API containing large images fail when GZipped.
  annotate.setDisableGZipContent(true);

  BatchAnnotateImagesResponse batchResponse = annotate.execute();
  assert batchResponse.getResponses().size() == 1;
  AnnotateImageResponse response = batchResponse.getResponses().get(0);
  if (response.getFaceAnnotations() == null) {
    throw new IOException(
        response.getError() != null
            ? response.getError().getMessage()
            : "Unknown error getting image annotations");
  }
  return response.getFaceAnnotations();
}

Node.js

async function detectFaces(inputFile) {
  // Make a call to the Vision API to detect the faces
  const request = {image: {source: {filename: inputFile}}};
  const results = await client.faceDetection(request);
  const faces = results[0].faceAnnotations;
  const numFaces = faces.length;
  console.log(`Found ${numFaces} face${numFaces === 1 ? '' : 's'}.`);
  return faces;
}

Python

def detect_face(face_file, max_results=4):
    """Uses the Vision API to detect faces in the given file.

    Args:
        face_file: A file-like object containing an image with faces.

    Returns:
        An array of Face objects with information about the picture.
    """
    client = vision.ImageAnnotatorClient()

    content = face_file.read()
    image = vision.Image(content=content)

    return client.face_detection(image=image, max_results=max_results).face_annotations

レスポンスを処理する

画像の中の顔が検出されました。顔アノテーション リクエストに対するレスポンスの中には、検出された顔についての多数のメタデータが含まれています。このメタデータの中には、その顔を囲むポリゴンの座標があります。ただし、この時点では、これは単なる数字のリストです。これを使って、画像の中の顔が確かに検出されたことを確認しましょう。Vision API から返された座標を使用して、画像のコピーの上にポリゴンを描画します。

Java

/** Reads image {@code inputPath} and writes {@code outputPath} with {@code faces} outlined. */
private static void writeWithFaces(Path inputPath, Path outputPath, List<FaceAnnotation> faces)
    throws IOException {
  BufferedImage img = ImageIO.read(inputPath.toFile());
  annotateWithFaces(img, faces);
  ImageIO.write(img, "jpg", outputPath.toFile());
}

/** Annotates an image {@code img} with a polygon around each face in {@code faces}. */
public static void annotateWithFaces(BufferedImage img, List<FaceAnnotation> faces) {
  for (FaceAnnotation face : faces) {
    annotateWithFace(img, face);
  }
}

/** Annotates an image {@code img} with a polygon defined by {@code face}. */
private static void annotateWithFace(BufferedImage img, FaceAnnotation face) {
  Graphics2D gfx = img.createGraphics();
  Polygon poly = new Polygon();
  for (Vertex vertex : face.getFdBoundingPoly().getVertices()) {
    poly.addPoint(vertex.getX(), vertex.getY());
  }
  gfx.setStroke(new BasicStroke(5));
  gfx.setColor(new Color(0x00ff00));
  gfx.draw(poly);
}

Node.js

node-canvas ライブラリを使用して画像の上に描画します。

async function highlightFaces(inputFile, faces, outputFile, PImage) {
  // Open the original image
  const stream = fs.createReadStream(inputFile);
  let promise;
  if (inputFile.match(/\.jpg$/)) {
    promise = PImage.decodeJPEGFromStream(stream);
  } else if (inputFile.match(/\.png$/)) {
    promise = PImage.decodePNGFromStream(stream);
  } else {
    throw new Error(`Unknown filename extension ${inputFile}`);
  }
  const img = await promise;
  const context = img.getContext('2d');
  context.drawImage(img, 0, 0, img.width, img.height, 0, 0);

  // Now draw boxes around all the faces
  context.strokeStyle = 'rgba(0,255,0,0.8)';
  context.lineWidth = '5';

  faces.forEach(face => {
    context.beginPath();
    let origX = 0;
    let origY = 0;
    face.boundingPoly.vertices.forEach((bounds, i) => {
      if (i === 0) {
        origX = bounds.x;
        origY = bounds.y;
        context.moveTo(bounds.x, bounds.y);
      } else {
        context.lineTo(bounds.x, bounds.y);
      }
    });
    context.lineTo(origX, origY);
    context.stroke();
  });

  // Write the result to a file
  console.log(`Writing to file ${outputFile}`);
  const writeStream = fs.createWriteStream(outputFile);
  await PImage.encodePNGToStream(img, writeStream);
}

Python

def highlight_faces(image, faces, output_filename):
    """Draws a polygon around the faces, then saves to output_filename.

    Args:
      image: a file containing the image with the faces.
      faces: a list of faces found in the file. This should be in the format
          returned by the Vision API.
      output_filename: the name of the image file to be created, where the
          faces have polygons drawn around them.
    """
    im = Image.open(image)
    draw = ImageDraw.Draw(im)
    # Sepecify the font-family and the font-size
    for face in faces:
        box = [(vertex.x, vertex.y) for vertex in face.bounding_poly.vertices]
        draw.line(box + [box[0]], width=5, fill="#00ff00")
        # Place the confidence value/score of the detected faces above the
        # detection box in the output image
        draw.text(
            (
                (face.bounding_poly.vertices)[0].x,
                (face.bounding_poly.vertices)[0].y - 30,
            ),
            str(format(face.detection_confidence, ".3f")) + "%",
            fill="#FF0000",
        )
    im.save(output_filename)

すべてをまとめる

Java

/** Annotates an image using the Vision API. */
public static void main(String[] args) throws IOException, GeneralSecurityException {
  if (args.length != 2) {
    System.err.println("Usage:");
    System.err.printf(
        "\tjava %s inputImagePath outputImagePath\n", FaceDetectApp.class.getCanonicalName());
    System.exit(1);
  }
  Path inputPath = Paths.get(args[0]);
  Path outputPath = Paths.get(args[1]);
  if (!outputPath.toString().toLowerCase().endsWith(".jpg")) {
    System.err.println("outputImagePath must have the file extension 'jpg'.");
    System.exit(1);
  }

  FaceDetectApp app = new FaceDetectApp(getVisionService());
  List<FaceAnnotation> faces = app.detectFaces(inputPath, MAX_RESULTS);
  System.out.printf("Found %d face%s\n", faces.size(), faces.size() == 1 ? "" : "s");
  System.out.printf("Writing to file %s\n", outputPath);
  app.writeWithFaces(inputPath, outputPath, faces);
}
...

サンプルをビルドして実行するには、サンプルコード ディレクトリの次のコマンドを実行します。

mvn clean compile assembly:single
java -cp target/vision-face-detection-1.0-SNAPSHOT-jar-with-dependencies.jar \
    com.google.cloud.vision.samples.facedetect.FaceDetectApp \
    data/face.jpg \
    output.jpg

Node.js

async function main(inputFile, outputFile) {
  const PImage = require('pureimage');
  outputFile = outputFile || 'out.png';
  const faces = await detectFaces(inputFile);
  console.log('Highlighting...');
  await highlightFaces(inputFile, faces, outputFile, PImage);
  console.log('Finished!');
}

サンプルを実行するには、サンプルコードのディレクトリの次のコマンドを実行します。

node faceDetection resources/face.png

Python

def main(input_filename, output_filename, max_results):
    with open(input_filename, "rb") as image:
        faces = detect_face(image, max_results)
        print("Found {} face{}".format(len(faces), "" if len(faces) == 1 else "s"))

        print(f"Writing to file {output_filename}")
        # Reset the file pointer, so we can read the file again
        image.seek(0)
        highlight_faces(image, faces, output_filename)

クリーンアップ

このチュートリアルで使用したリソースについて、Google Cloud アカウントに課金されないようにするには、リソースを含むプロジェクトを削除するか、プロジェクトを維持して個々のリソースを削除します。

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.