Détecter des visages

La fonctionnalité de détection des visages détecte les visages dans une image, ainsi que leurs caractéristiques principales, telles que l'état émotionnel ou les accessoires portés (wearing headwear). Elle ne permet pas la reconnaissance faciale des individus.

image montrant deux visages avec et sans annotations
Crédit image : Himanshu Singh Gurjar sur Unsplash (annotations ajoutées).

Demandes de détection de visages

Configurer votre authentification et votre projet GCP

Détecter des visages dans une image locale

L'API Vision peut détecter des fonctionnalités dans un fichier image local en envoyant le contenu du fichier image en tant que chaîne encodée en base64 dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • base64-encoded-image : représentation en base64 (chaîne ASCII) de vos données d'image binaire. Cette chaîne doit ressembler à la chaîne suivante :
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Consultez la section encodage en base64 pour plus d'informations.

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "maxResults": 10,
          "type": "FACE_DETECTION"
        }
      ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Une réponse FACE_DETECTION comprend des cadres de délimitation pour tous les visages détectés, des points de repère identifiés sur les visages (yeux, nez, bouche, etc.), ainsi que des indices de confiance associés aux propriétés d'image et de visage (joie, tristesse, colère, surprise, etc.).

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Vision en langage C#.

// Load an image from a local file.
var image = Image.FromFile(filePath);
var client = ImageAnnotatorClient.Create();
var response = client.DetectFaces(image);
int count = 1;
foreach (var faceAnnotation in response)
{
    Console.WriteLine("Face {0}:", count++);
    Console.WriteLine("  Joy: {0}", faceAnnotation.JoyLikelihood);
    Console.WriteLine("  Anger: {0}", faceAnnotation.AngerLikelihood);
    Console.WriteLine("  Sorrow: {0}", faceAnnotation.SorrowLikelihood);
    Console.WriteLine("  Surprise: {0}", faceAnnotation.SurpriseLikelihood);
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Vision en langage Go.


// detectFaces gets faces from the Vision API for an image at the given file path.
func detectFaces(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectFaces(ctx, image, nil, 10)
	if err != nil {
		return err
	}
	if len(annotations) == 0 {
		fmt.Fprintln(w, "No faces found.")
	} else {
		fmt.Fprintln(w, "Faces:")
		for i, annotation := range annotations {
			fmt.Fprintln(w, "  Face", i)
			fmt.Fprintln(w, "    Anger:", annotation.AngerLikelihood)
			fmt.Fprintln(w, "    Joy:", annotation.JoyLikelihood)
			fmt.Fprintln(w, "    Surprise:", annotation.SurpriseLikelihood)
		}
	}
	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration de Java du guide de démarrage rapide de l'API Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision Java.

public static void detectFaces(String filePath, PrintStream out) throws Exception, IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  Feature feat = Feature.newBuilder().setType(Type.FACE_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      for (FaceAnnotation annotation : res.getFaceAnnotationsList()) {
        out.printf(
            "anger: %s\njoy: %s\nsurprise: %s\nposition: %s",
            annotation.getAngerLikelihood(),
            annotation.getJoyLikelihood(),
            annotation.getSurpriseLikelihood(),
            annotation.getBoundingPoly());
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage Node.js.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

const [result] = await client.faceDetection(fileName);
const faces = result.faceAnnotations;
console.log('Faces:');
faces.forEach((face, i) => {
  console.log(`  Face #${i + 1}:`);
  console.log(`    Joy: ${face.joyLikelihood}`);
  console.log(`    Anger: ${face.angerLikelihood}`);
  console.log(`    Sorrow: ${face.sorrowLikelihood}`);
  console.log(`    Surprise: ${face.surpriseLikelihood}`);
});

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

function detect_face($path, $outFile = null)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    // $path = 'path/to/your/image.jpg'
    $image = file_get_contents($path);
    $response = $imageAnnotator->faceDetection($image);
    $faces = $response->getFaceAnnotations();

    # names of likelihood from google.cloud.vision.enums
    $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
    'POSSIBLE', 'LIKELY', 'VERY_LIKELY'];

    printf("%d faces found:" . PHP_EOL, count($faces));
    foreach ($faces as $face) {
        $anger = $face->getAngerLikelihood();
        printf("Anger: %s" . PHP_EOL, $likelihoodName[$anger]);

        $joy = $face->getJoyLikelihood();
        printf("Joy: %s" . PHP_EOL, $likelihoodName[$joy]);

        $surprise = $face->getSurpriseLikelihood();
        printf("Surprise: %s" . PHP_EOL, $likelihoodName[$surprise]);

        # get bounds
        $vertices = $face->getBoundingPoly()->getVertices();
        $bounds = [];
        foreach ($vertices as $vertex) {
            $bounds[] = sprintf('(%d,%d)', $vertex->getX(), $vertex->getY());
        }
        print('Bounds: ' . join(', ', $bounds) . PHP_EOL);
        print(PHP_EOL);
    }
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage Python.

def detect_faces(path):
    """Detects faces in an image."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.types.Image(content=content)

    response = client.face_detection(image=image)
    faces = response.face_annotations

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Faces:')

    for face in faces:
        print('anger: {}'.format(likelihood_name[face.anger_likelihood]))
        print('joy: {}'.format(likelihood_name[face.joy_likelihood]))
        print('surprise: {}'.format(likelihood_name[face.surprise_likelihood]))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in face.bounding_poly.vertices])

        print('face bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage Ruby.

# image_path = "Path to local image file, eg. './image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.face_detection image: image_path

response.responses.each do |res|
  res.face_annotations.each do |face|
    puts "Joy:      #{face.joy_likelihood}"
    puts "Anger:    #{face.anger_likelihood}"
    puts "Sorrow:   #{face.sorrow_likelihood}"
    puts "Surprise: #{face.surprise_likelihood}"
  end
end

Détecter les visages dans une image distante

Pour plus de facilité, l'API Vision peut directement détecter des fonctionnalités dans un fichier image de Google Cloud Storage ou sur le Web sans envoyer le contenu du fichier image dans le corps de votre requête.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

gs://cloud-samples-data/vision/face/faces.jpeg
  • cloud-storage-image-uri : chemin d'accès à un fichier d'image valide dans un bucket Cloud Storage. Il faut au minimum disposer des droits en lecture sur le fichier. Exemple :
    • gs://storage-bucket/filename.jpg

Méthode HTTP et URL :

POST https://vision.googleapis.com/v1/images:annotate

Corps JSON de la requête :

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "cloud-storage-image-uri"
        }
       },
       "features": [
         {
           "maxResults": 10,
           "type": "FACE_DETECTION"
         }
       ]
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

.

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la requête aboutit, le serveur affiche un code d'état HTTP 200 OK et la réponse au format JSON.

Une réponse FACE_DETECTION comprend des cadres de délimitation pour tous les visages détectés, des points de repère identifiés sur les visages (yeux, nez, bouche, etc.), ainsi que des indices de confiance associés aux propriétés d'image et de visage (joie, tristesse, colère, surprise, etc.).

C#

Avant d'essayer cet exemple, suivez les instructions de configuration pour C# du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Vision en langage C#.

// Specify a Google Cloud Storage uri for the image
// or a publicly accessible HTTP or HTTPS uri.
var image = Image.FromUri(uri);
var client = ImageAnnotatorClient.Create();
var response = client.DetectFaces(image);
int count = 1;
foreach (var faceAnnotation in response)
{
    Console.WriteLine("Face {0}:", count++);
    Console.WriteLine("  Joy: {0}", faceAnnotation.JoyLikelihood);
    Console.WriteLine("  Anger: {0}", faceAnnotation.AngerLikelihood);
    Console.WriteLine("  Sorrow: {0}", faceAnnotation.SorrowLikelihood);
    Console.WriteLine("  Surprise: {0}", faceAnnotation.SurpriseLikelihood);
}

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour plus d'informations, consultez la documentation de référence de l'API Vision en langage Go.


// detectFaces gets faces from the Vision API for an image at the given file path.
func detectFacesURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectFaces(ctx, image, nil, 10)
	if err != nil {
		return err
	}
	if len(annotations) == 0 {
		fmt.Fprintln(w, "No faces found.")
	} else {
		fmt.Fprintln(w, "Faces:")
		for i, annotation := range annotations {
			fmt.Fprintln(w, "  Face", i)
			fmt.Fprintln(w, "    Anger:", annotation.AngerLikelihood)
			fmt.Fprintln(w, "    Joy:", annotation.JoyLikelihood)
			fmt.Fprintln(w, "    Surprise:", annotation.SurpriseLikelihood)
		}
	}
	return nil
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration de Java du guide de démarrage rapide de l'API Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision Java.

public static void detectFacesGcs(String gcsPath, PrintStream out) throws Exception, IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();
  Feature feat = Feature.newBuilder().setType(Type.FACE_DETECTION).build();

  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      for (FaceAnnotation annotation : res.getFaceAnnotationsList()) {
        out.printf(
            "anger: %s\njoy: %s\nsurprise: %s\nposition: %s",
            annotation.getAngerLikelihood(),
            annotation.getJoyLikelihood(),
            annotation.getSurpriseLikelihood(),
            annotation.getBoundingPoly());
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage Node.js.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs face detection on the gcs file
const [result] = await client.faceDetection(`gs://${bucketName}/${fileName}`);
const faces = result.faceAnnotations;
console.log('Faces:');
faces.forEach((face, i) => {
  console.log(`  Face #${i + 1}:`);
  console.log(`    Joy: ${face.joyLikelihood}`);
  console.log(`    Anger: ${face.angerLikelihood}`);
  console.log(`    Sorrow: ${face.sorrowLikelihood}`);
  console.log(`    Surprise: ${face.surpriseLikelihood}`);
});

PHP

Avant d'essayer cet exemple, suivez les instructions de configuration pour PHP du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_face_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->faceDetection($path);
    $faces = $response->getFaceAnnotations();

    # names of likelihood from google.cloud.vision.enums
    $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
    'POSSIBLE', 'LIKELY', 'VERY_LIKELY'];

    printf("%d faces found:" . PHP_EOL, count($faces));
    foreach ($faces as $face) {
        $anger = $face->getAngerLikelihood();
        printf("Anger: %s" . PHP_EOL, $likelihoodName[$anger]);

        $joy = $face->getJoyLikelihood();
        printf("Joy: %s" . PHP_EOL, $likelihoodName[$joy]);

        $surprise = $face->getSurpriseLikelihood();
        printf("Surprise: %s" . PHP_EOL, $likelihoodName[$surprise]);

        # get bounds
        $vertices = $face->getBoundingPoly()->getVertices();
        $bounds = [];
        foreach ($vertices as $vertex) {
            $bounds[] = sprintf('(%d,%d)', $vertex->getX(), $vertex->getY());
        }
        print('Bounds: ' . join(', ', $bounds) . PHP_EOL);
        print(PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage Python.

def detect_faces_uri(uri):
    """Detects faces in the file located in Google Cloud Storage or the web."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.types.Image()
    image.source.image_uri = uri

    response = client.face_detection(image=image)
    faces = response.face_annotations

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Faces:')

    for face in faces:
        print('anger: {}'.format(likelihood_name[face.anger_likelihood]))
        print('joy: {}'.format(likelihood_name[face.joy_likelihood]))
        print('surprise: {}'.format(likelihood_name[face.surprise_likelihood]))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in face.bounding_poly.vertices])

        print('face bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

Ruby

Avant d'essayer cet exemple, suivez les instructions de configuration pour Ruby du guide de démarrage rapide de Vision avec les bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vision en langage Ruby.

# image_path = "Google Cloud Storage URI, eg. 'gs://my-bucket/image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.face_detection image: image_path

response.responses.each do |res|
  res.face_annotations.each do |face|
    puts "Joy:      #{face.joy_likelihood}"
    puts "Anger:    #{face.anger_likelihood}"
    puts "Sorrow:   #{face.sorrow_likelihood}"
    puts "Surprise: #{face.surprise_likelihood}"
  end
end

Commande gcloud

Pour exécuter la détection de visages, utilisez la commande gcloud ml vision detect-faces comme indiqué dans l'exemple suivant :

gcloud ml vision detect-faces gs://cloud-samples-data/vision/face/faces.jpeg

Essayer

Essayez la détection des visages ci-dessous. Vous pouvez utiliser l'image déjà spécifiée gs://cloud-samples-data/vision/face/faces.jpeg ou spécifier votre propre image à la place. Pour envoyer la requête, cliquez sur Exécuter.

image montrant deux visages avec et sans annotations
Crédit image : Himanshu Singh Gurjar sur Unsplash (annotations ajoutées).