您可以使用 Cloud Run 函式,進一步處理 Vertex AI 自訂訓練模型和 BigQuery 應用程式節點的輸出資料。您可以透過下列方式,將這些整合功能與應用程式節點搭配使用:
- Vertex AI 自訂模型節點:使用 Cloud Run 函式,對原始 Vertex AI 自訂模型的預測結果進行後處理。
- BigQuery 節點:使用 Cloud Run 函式,透過原始註解產生自訂 BigQuery 資料列。
您在 App Platform 中使用的所有 Cloud Run 函式都必須符合下列規定:
- Cloud Run 函式必須提供 Http 觸發條件。
- Cloud Run 函式必須接收
AppPlatformCloudFunctionRequest
JSON 字串,並傳回AppPlatformCloudFunctionResponse
JSON 字串。 - 儲存在要求 和 回應中的註解酬載結構定義,必須遵循目標模型的規格。
API 定義:AppPlatformMetadata
、AppPlatformCloudFunctionRequest
、AppPlatformCloudFunctionResponse
// Message of essential metadata of App Platform. // This message is usually attached to a certain model output annotation for // customer to identify the source of the data. message AppPlatformMetadata { // The application resource name. string application = 1; // The instance resource id. Instance is the nested resource of application // under collection 'instances'. string instance_id = 2; // The node name of the application graph. string node = 3; // The referred model resource name of the application node. string processor = 4; } // For any Cloud Run function based customer processing logic, customer's cloud // function is expected to receive AppPlatformCloudFunctionRequest as request // and send back AppPlatformCloudFunctionResponse as response. // Message of request from AppPlatform to Cloud Run functions. message AppPlatformCloudFunctionRequest { // The metadata of the AppPlatform for customer to identify the source of the // payload. AppPlatformMetadata app_platform_metadata = 1; // A general annotation message that uses struct format to represent different // concrete annotation protobufs. message StructedInputAnnotation { // The ingestion time of the current annotation. int64 ingestion_time_micros = 1; // The struct format of the actual annotation. protobuf.Struct annotation = 2; } // The actual annotations to be processed by the customized Cloud Run function. repeated StructedInputAnnotation annotations = 2; } // Message of the response from customer's Cloud Run function to AppPlatform. message AppPlatformCloudFunctionResponse { // A general annotation message that uses struct format to represent different // concrete annotation protobufs. message StructedOutputAnnotation { // The struct format of the actual annotation. protobuf.Struct annotation = 1; } // The modified annotations that is returned back to AppPlatform. // If the annotations fields are empty, then those annotations will be dropped // by AppPlatform. repeated StructedOutputAnnotation annotations = 2; }
用法示範
請使用以下程式碼,對 Vertex AI 自訂訓練模型的註解進行後置處理,並將註解替換為常數鍵/值組合。
Python
import functions_framework
from flask import jsonify
@functions_framework.http
def hello_http(request):
request_json = request.get_json(silent=True)
request_args = request.args
if request_json and 'annotations' in request_json:
annotations = []
for ele in request_json['annotations']:
for k, v in ele.items():
if k == "annotation":
if "predictions" in v:
# Replace the annotation.
v["predictions"][0] = {"user": "googler"}
annotations.append({"annotation" : v})
else:
annotations = 'Failure'
return jsonify(annotations=annotations)