Início rápido da API Gemini no Vertex AI

Este início rápido mostra como instalar o SDK Google Gen AI para o seu idioma de escolha e, em seguida, fazer o seu primeiro pedido de API. Os exemplos variam ligeiramente consoante a autenticação no Vertex AI seja feita através de uma chave de API ou de credenciais padrão da aplicação (ADC).

Escolha o seu método de autenticação:


Antes de começar

Configure as Credenciais padrão da aplicação, se ainda não o fez.

Funções necessárias

Para receber as autorizações de que precisa para usar a API Gemini no Vertex AI, peça ao seu administrador que lhe conceda a função IAM Utilizador do Vertex AI (roles/aiplatform.user) no seu projeto. Para mais informações sobre a atribuição de funções, consulte o artigo Faça a gestão do acesso a projetos, pastas e organizações.

Também pode conseguir as autorizações necessárias através de funções personalizadas ou outras funções predefinidas.

Instale o SDK e configure o seu ambiente

Na sua máquina local, clique num dos seguintes separadores para instalar o SDK para o seu idioma de programação.

SDK de IA gen para Python

Instale e atualize o SDK de IA gen para Python executando este comando.

pip install --upgrade google-genai

Defina variáveis de ambiente:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

SDK de IA gen para Go

Instale e atualize o SDK de IA gen para Go executando este comando.

go get google.golang.org/genai

Defina variáveis de ambiente:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

SDK de IA gen para Node.js

Instale e atualize o SDK de IA gen para Node.js executando este comando.

npm install @google/genai

Defina variáveis de ambiente:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

SDK de IA gen para Java

Instale e atualize o SDK de IA gen para Java executando este comando.

Maven

Adicione o seguinte ao seu pom.xml:

<dependencies>
  <dependency>
    <groupId>com.google.genai</groupId>
    <artifactId>google-genai</artifactId>
    <version>0.7.0</version>
  </dependency>
</dependencies>

Defina variáveis de ambiente:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

REST

Defina variáveis de ambiente:

GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
GOOGLE_CLOUD_LOCATION=global
API_ENDPOINT=YOUR_API_ENDPOINT
MODEL_ID="gemini-2.5-flash"
GENERATE_CONTENT_API="generateContent"

Faça o seu primeiro pedido

Use o método generateContent para enviar um pedido à API Gemini no Vertex AI:

Python

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="How does AI work?",
)
print(response.text)
# Example response:
# Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
#
# Here's a simplified overview:
# ...

Go

import (
	"context"
	"fmt"
	"io"

	"google.golang.org/genai"
)

// generateWithText shows how to generate text using a text prompt.
func generateWithText(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	resp, err := client.Models.GenerateContent(ctx,
		"gemini-2.5-flash",
		genai.Text("How does AI work?"),
		nil,
	)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)
	// Example response:
	// That's a great question! Understanding how AI works can feel like ...
	// ...
	// **1. The Foundation: Data and Algorithms**
	// ...

	return nil
}

Node.js

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: 'How does AI work?',
  });

  console.log(response.text);

  return response.text;
}

Java


import com.google.genai.Client;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;

public class TextGenerationWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with text input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(modelId, "How does AI work?", null);

      System.out.print(response.text());
      // Example response:
      // Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
      //
      // Here's a simplified overview:
      // ...
      return response.text();
    }
  }
}

REST

Para enviar este pedido de comando, execute o comando curl a partir da linha de comandos ou inclua a chamada REST na sua aplicação.

curl
-X POST
-H "Content-Type: application/json"
-H "Authorization: Bearer $(gcloud auth print-access-token)"
"https://${API_ENDPOINT}/v1/projects/${GOOGLE_CLOUD_PROJECT}/locations/${GOOGLE_CLOUD_LOCATION}/publishers/google/models/${MODEL_ID}:${GENERATE_CONTENT_API}" -d
$'{
  "contents": {
    "role": "user",
    "parts": {
      "text": "Explain how AI works in a few words"
    }
  }
}'

O modelo devolve uma resposta. Tenha em atenção que a resposta é gerada em secções com cada secção avaliada separadamente quanto à segurança.

Gerar imagens

O Gemini pode gerar e processar imagens de forma conversacional. Pode pedir ao Gemini para realizar várias tarefas relacionadas com imagens, como a geração e a edição de imagens, através de texto, imagens ou uma combinação de ambos. O código seguinte demonstra como gerar uma imagem com base num comando descritivo:

Tem de incluir responseModalities: ["TEXT", "IMAGE"] na sua configuração. A saída apenas de imagens não é suportada com estes modelos.

Python

from google import genai
from google.genai.types import GenerateContentConfig, Modality
from PIL import Image
from io import BytesIO

client = genai.Client()

response = client.models.generate_content(
    model="gemini-2.5-flash-image-preview",
    contents=("Generate an image of the Eiffel tower with fireworks in the background."),
    config=GenerateContentConfig(
        response_modalities=[Modality.TEXT, Modality.IMAGE],
        candidate_count=1,
        safety_settings=[
            {"method": "PROBABILITY"},
            {"category": "HARM_CATEGORY_DANGEROUS_CONTENT"},
            {"threshold": "BLOCK_MEDIUM_AND_ABOVE"},
        ],
    ),
)
for part in response.candidates[0].content.parts:
    if part.text:
        print(part.text)
    elif part.inline_data:
        image = Image.open(BytesIO((part.inline_data.data)))
        image.save("output_folder/example-image-eiffel-tower.png")
# Example response:
#   I will generate an image of the Eiffel Tower at night, with a vibrant display of
#   colorful fireworks exploding in the dark sky behind it. The tower will be
#   illuminated, standing tall as the focal point of the scene, with the bursts of
#   light from the fireworks creating a festive atmosphere.

Node.js

const fs = require('fs');
const {GoogleGenAI, Modality} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION =
  process.env.GOOGLE_CLOUD_LOCATION || 'us-central1';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContentStream({
    model: 'gemini-2.0-flash-exp',
    contents:
      'Generate an image of the Eiffel tower with fireworks in the background.',
    config: {
      responseModalities: [Modality.TEXT, Modality.IMAGE],
    },
  });

  const generatedFileNames = [];
  let imageIndex = 0;
  for await (const chunk of response) {
    const text = chunk.text;
    const data = chunk.data;
    if (text) {
      console.debug(text);
    } else if (data) {
      const fileName = `generate_content_streaming_image_${imageIndex++}.png`;
      console.debug(`Writing response image to file: ${fileName}.`);
      try {
        fs.writeFileSync(fileName, data);
        generatedFileNames.push(fileName);
      } catch (error) {
        console.error(`Failed to write image file ${fileName}:`, error);
      }
    }
  }

  return generatedFileNames;
}

Compreensão de imagens

O Gemini também consegue compreender imagens. O código seguinte usa a imagem gerada na secção anterior e usa um modelo diferente para inferir informações sobre a imagem:

Python

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "What is shown in this image?",
        Part.from_uri(
            file_uri="gs://cloud-samples-data/generative-ai/image/scones.jpg",
            mime_type="image/jpeg",
        ),
    ],
)
print(response.text)
# Example response:
# The image shows a flat lay of blueberry scones arranged on parchment paper. There are ...

Go

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithTextImage shows how to generate text using both text and image input
func generateWithTextImage(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What is shown in this image?"},
			{FileData: &genai.FileData{
				// Image source: https://storage.googleapis.com/cloud-samples-data/generative-ai/image/scones.jpg
				FileURI:  "gs://cloud-samples-data/generative-ai/image/scones.jpg",
				MIMEType: "image/jpeg",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// The image shows an overhead shot of a rustic, artistic arrangement on a surface that ...

	return nil
}

Node.js

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const image = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/image/scones.jpg',
      mimeType: 'image/jpeg',
    },
  };

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [image, 'What is shown in this image?'],
  });

  console.log(response.text);

  return response.text;
}

Java


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithTextAndImage {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with text and image input
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText("What is shown in this image?"),
                  Part.fromUri(
                      "gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg")),
              null);

      System.out.print(response.text());
      // Example response:
      // The image shows a flat lay of blueberry scones arranged on parchment paper. There are ...
      return response.text();
    }
  }
}

Execução de código

A funcionalidade de execução de código da API Gemini no Vertex AI permite que o modelo gere e execute código Python e aprenda iterativamente com os resultados até chegar a um resultado final. O Vertex AI oferece a execução de código como uma ferramenta, semelhante à chamada de funções. Pode usar esta capacidade de execução de código para criar aplicações que beneficiam do raciocínio baseado em código e que produzem resultados de texto. Por exemplo:

Python

from google import genai
from google.genai.types import (
    HttpOptions,
    Tool,
    ToolCodeExecution,
    GenerateContentConfig,
)

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

code_execution_tool = Tool(code_execution=ToolCodeExecution())
response = client.models.generate_content(
    model=model_id,
    contents="Calculate 20th fibonacci number. Then find the nearest palindrome to it.",
    config=GenerateContentConfig(
        tools=[code_execution_tool],
        temperature=0,
    ),
)
print("# Code:")
print(response.executable_code)
print("# Outcome:")
print(response.code_execution_result)

# Example response:
# # Code:
# def fibonacci(n):
#     if n <= 0:
#         return 0
#     elif n == 1:
#         return 1
#     else:
#         a, b = 0, 1
#         for _ in range(2, n + 1):
#             a, b = b, a + b
#         return b
#
# fib_20 = fibonacci(20)
# print(f'{fib_20=}')
#
# # Outcome:
# fib_20=6765

Go

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithCodeExec shows how to generate text using the code execution tool.
func generateWithCodeExec(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	prompt := "Calculate 20th fibonacci number. Then find the nearest palindrome to it."
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: prompt},
		},
			Role: "user"},
	}
	config := &genai.GenerateContentConfig{
		Tools: []*genai.Tool{
			{CodeExecution: &genai.ToolCodeExecution{}},
		},
		Temperature: genai.Ptr(float32(0.0)),
	}
	modelName := "gemini-2.5-flash"

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	for _, p := range resp.Candidates[0].Content.Parts {
		if p.Text != "" {
			fmt.Fprintf(w, "Gemini: %s", p.Text)
		}
		if p.ExecutableCode != nil {
			fmt.Fprintf(w, "Language: %s\n%s\n", p.ExecutableCode.Language, p.ExecutableCode.Code)
		}
		if p.CodeExecutionResult != nil {
			fmt.Fprintf(w, "Outcome: %s\n%s\n", p.CodeExecutionResult.Outcome, p.CodeExecutionResult.Output)
		}
	}

	// Example response:
	// Gemini: Okay, I can do that. First, I'll calculate the 20th Fibonacci number. Then, I need ...
	//
	// Language: PYTHON
	//
	// def fibonacci(n):
	//    ...
	//
	// fib_20 = fibonacci(20)
	// print(f'{fib_20=}')
	//
	// Outcome: OUTCOME_OK
	// fib_20=6765
	//
	// Now that I have the 20th Fibonacci number (6765), I need to find the nearest palindrome. ...
	// ...

	return nil
}

Node.js

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents:
      'What is the sum of the first 50 prime numbers? Generate and run code for the calculation, and make sure you get all 50.',
    config: {
      tools: [{codeExecution: {}}],
      temperature: 0,
    },
  });

  console.debug(response.executableCode);
  console.debug(response.codeExecutionResult);

  return response.codeExecutionResult;
}

Para ver mais exemplos de execução de código, consulte a documentação de execução de código.

O que se segue?

Agora que fez o seu primeiro pedido de API, recomendamos que explore os seguintes guias que mostram como configurar funcionalidades mais avançadas do Vertex AI para código de produção: