Kurze Bilduntertitel erhalten

In diesem Beispiel wird gezeigt, wie Sie mit dem Imagen-Modell eine kurze, allgemeine Beschreibung eines bereitgestellten Bildes erhalten.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.api.gax.rpc.ApiException;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.gson.Gson;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Base64;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class GetShortFormImageCaptionsSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "my-project-id";
    String location = "us-central1";
    String inputPath = "/path/to/my-input.png";

    getShortFormImageCaptions(projectId, location, inputPath);
  }

  // Get the short form captions for an image
  public static PredictResponse getShortFormImageCaptions(
      String projectId, String location, String inputPath) throws ApiException, IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {

      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(
              projectId, location, "google", "imagetext@001");

      // Encode image to Base64
      String imageBase64 =
          Base64.getEncoder().encodeToString(Files.readAllBytes(Paths.get(inputPath)));

      // Create the image map
      Map<String, String> imageMap = new HashMap<>();
      imageMap.put("bytesBase64Encoded", imageBase64);

      Map<String, Object> instancesMap = new HashMap<>();
      instancesMap.put("image", imageMap);
      Value instances = mapToValue(instancesMap);

      // Optional parameters
      Map<String, Object> paramsMap = new HashMap<>();
      paramsMap.put("language", "en");
      paramsMap.put("sampleCount", 2);
      Value parameters = mapToValue(paramsMap);

      PredictResponse predictResponse =
          predictionServiceClient.predict(
              endpointName, Collections.singletonList(instances), parameters);

      for (Value prediction : predictResponse.getPredictionsList()) {
        System.out.println(prediction.getStringValue());
      }
      return predictResponse;
    }
  }

  private static Value mapToValue(Map<String, Object> map) throws InvalidProtocolBufferException {
    Gson gson = new Gson();
    String json = gson.toJson(map);
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(json, builder);
    return builder.build();
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * TODO(developer): Update these variables before running the sample.
 */
const projectId = process.env.CAIP_PROJECT_ID;
const location = 'us-central1';
const inputFile = 'resources/cat.png';

const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function getShortFormImageCaptions() {
  const fs = require('fs');
  // Configure the parent resource
  const endpoint = `projects/${projectId}/locations/${location}/publishers/google/models/imagetext@001`;

  const imageFile = fs.readFileSync(inputFile);
  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const instance = {
    image: {
      bytesBase64Encoded: encodedImage,
    },
  };
  const instanceValue = helpers.toValue(instance);
  const instances = [instanceValue];

  const parameter = {
    // Optional parameters
    language: 'en',
    sampleCount: 2,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  const predictions = response.predictions;
  if (predictions.length === 0) {
    console.log(
      'No captions were generated. Check the request parameters and image.'
    );
  } else {
    predictions.forEach(prediction => {
      console.log(prediction.stringValue);
    });
  }
}
await getShortFormImageCaptions();

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import vertexai
from vertexai.preview.vision_models import Image, ImageTextModel

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# input_file = "input-image.png"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = ImageTextModel.from_pretrained("imagetext@001")
source_img = Image.load_from_file(location=input_file)

captions = model.get_captions(
    image=source_img,
    # Optional parameters
    language="en",
    number_of_results=2,
)

print(captions)
# Example response:
# ['a cat with green eyes looks up at the sky']

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud -Produkte finden Sie im Google Cloud Beispielbrowser.