Bildinhalt mit maskenbasiertem Outpainting mit Imagen maximieren

In diesem Beispiel wird gezeigt, wie Sie das Imagen-Modell für die maskenbasierte Bildbearbeitung verwenden. Geben Sie einen Maskenbereich an, in dem der Inhalt eines Basisbildes maximiert werden soll, um es an eine größere oder unterschiedlich große Canvas anzupassen.

Codebeispiel

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.api.gax.rpc.ApiException;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.gson.Gson;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.Base64;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

public class EditImageOutpaintingMaskSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "my-project-id";
    String location = "us-central1";
    String inputPath = "/path/to/my-input.png";
    String maskPath = "/path/to/my-mask.png";
    String prompt = ""; // The optional text prompt describing what you want to see inserted.

    editImageOutpaintingMask(projectId, location, inputPath, maskPath, prompt);
  }

  // Edit an image using a mask file. Outpainting lets you expand the content of a base image to fit
  // a larger or differently sized mask canvas.
  public static PredictResponse editImageOutpaintingMask(
      String projectId, String location, String inputPath, String maskPath, String prompt)
      throws ApiException, IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {

      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(
              projectId, location, "google", "imagegeneration@006");

      // Encode image and mask to Base64
      String imageBase64 =
          Base64.getEncoder().encodeToString(Files.readAllBytes(Paths.get(inputPath)));
      String maskBase64 =
          Base64.getEncoder().encodeToString(Files.readAllBytes(Paths.get(maskPath)));

      // Create the image and image mask maps
      Map<String, String> imageMap = new HashMap<>();
      imageMap.put("bytesBase64Encoded", imageBase64);

      Map<String, String> maskMap = new HashMap<>();
      maskMap.put("bytesBase64Encoded", maskBase64);
      Map<String, Map> imageMaskMap = new HashMap<>();
      imageMaskMap.put("image", maskMap);

      Map<String, Object> instancesMap = new HashMap<>();
      instancesMap.put("prompt", prompt); // [ "prompt", "<my-prompt>" ]
      instancesMap.put(
          "image", imageMap); // [ "image", [ "bytesBase64Encoded", "iVBORw0KGgo...==" ] ]
      instancesMap.put(
          "mask",
          imageMaskMap); // [ "mask", [ "image", [ "bytesBase64Encoded", "iJKDF0KGpl...==" ] ] ]
      instancesMap.put("editMode", "outpainting"); // [ "editMode", "outpainting" ]
      Value instances = mapToValue(instancesMap);

      // Optional parameters
      Map<String, Object> paramsMap = new HashMap<>();
      paramsMap.put("sampleCount", 1);
      Value parameters = mapToValue(paramsMap);

      PredictResponse predictResponse =
          predictionServiceClient.predict(
              endpointName, Collections.singletonList(instances), parameters);

      for (Value prediction : predictResponse.getPredictionsList()) {
        Map<String, Value> fieldsMap = prediction.getStructValue().getFieldsMap();
        if (fieldsMap.containsKey("bytesBase64Encoded")) {
          String bytesBase64Encoded = fieldsMap.get("bytesBase64Encoded").getStringValue();
          Path tmpPath = Files.createTempFile("imagen-", ".png");
          Files.write(tmpPath, Base64.getDecoder().decode(bytesBase64Encoded));
          System.out.format("Image file written to: %s\n", tmpPath.toUri());
        }
      }
      return predictResponse;
    }
  }

  private static Value mapToValue(Map<String, Object> map) throws InvalidProtocolBufferException {
    Gson gson = new Gson();
    String json = gson.toJson(map);
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(json, builder);
    return builder.build();
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * TODO(developer): Update these variables before running the sample.
 */
const projectId = process.env.CAIP_PROJECT_ID;
const location = 'us-central1';
const inputFile = 'resources/roller_skaters.png';
const maskFile = 'resources/roller_skaters_mask.png';
const prompt = 'city with skyscrapers';

const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: `${location}-aiplatform.googleapis.com`,
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function editImageOutpaintingMask() {
  const fs = require('fs');
  const util = require('util');
  // Configure the parent resource
  const endpoint = `projects/${projectId}/locations/${location}/publishers/google/models/imagegeneration@006`;

  const imageFile = fs.readFileSync(inputFile);
  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const maskImageFile = fs.readFileSync(maskFile);
  // Convert the image mask data to a Buffer and base64 encode it.
  const encodedMask = Buffer.from(maskImageFile).toString('base64');

  const promptObj = {
    prompt: prompt, // The optional text prompt describing what you want to see inserted
    editMode: 'outpainting',
    image: {
      bytesBase64Encoded: encodedImage,
    },
    mask: {
      image: {
        bytesBase64Encoded: encodedMask,
      },
    },
  };
  const instanceValue = helpers.toValue(promptObj);
  const instances = [instanceValue];

  const parameter = {
    // Optional parameters
    seed: 100,
    // Controls the strength of the prompt
    // 0-9 (low strength), 10-20 (medium strength), 21+ (high strength)
    guidanceScale: 21,
    sampleCount: 1,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  const predictions = response.predictions;
  if (predictions.length === 0) {
    console.log(
      'No image was generated. Check the request parameters and prompt.'
    );
  } else {
    let i = 1;
    for (const prediction of predictions) {
      const buff = Buffer.from(
        prediction.structValue.fields.bytesBase64Encoded.stringValue,
        'base64'
      );
      // Write image content to the output file
      const writeFile = util.promisify(fs.writeFile);
      const filename = `output${i}.png`;
      await writeFile(filename, buff);
      console.log(`Saved image ${filename}`);
      i++;
    }
  }
}
await editImageOutpaintingMask();

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import vertexai
from vertexai.preview.vision_models import Image, ImageGenerationModel

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# input_file = "input-image.png"
# mask_file = "mask-image.png"
# output_file = "output-image.png"
# prompt = "" # The optional text prompt describing what you want to see inserted.

vertexai.init(project=PROJECT_ID, location="us-central1")

model = ImageGenerationModel.from_pretrained("imagegeneration@006")
base_img = Image.load_from_file(location=input_file)
mask_img = Image.load_from_file(location=mask_file)

images = model.edit_image(
    base_image=base_img,
    mask=mask_img,
    prompt=prompt,
    edit_mode="outpainting",
)

images[0].save(location=output_file, include_generation_parameters=False)

# Optional. View the edited image in a notebook.
# images[0].show()

print(f"Created output image using {len(images[0]._image_bytes)} bytes")
# Example response:
# Created output image using 1234567 bytes

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.