Systemanweisung auf Gemini 1.5 Pro festlegen

In diesem Beispiel wird gezeigt, wie Sie die Systemanweisungen an Gemini 1.5 Pro festlegen.

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class SystemInstruction
{
    public async Task<string> SetSystemInstruction(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-2.0-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"User input: I like bagels.
Answer:";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                    }
                }
            },
            SystemInstruction = new()
            {
                Parts =
                {
                    new Part { Text = "You are a helpful assistant." },
                    new Part { Text = "Your mission is to translate text in English to French." },
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function set_system_instruction(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-2.0-flash-001',
    systemInstruction: {
      parts: [
        {text: 'You are a helpful language translator.'},
        {text: 'Your mission is to translate text in English to French.'},
      ],
    },
  });

  const textPart = {
    text: `
    User input: I like bagels.
    Answer:`,
  };

  const request = {
    contents: [{role: 'user', parts: [textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.